Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
22 04 2022
Historique:
accepted: 09 03 2022
revised: 03 03 2022
received: 05 10 2021
pubmed: 25 3 2022
medline: 26 4 2022
entrez: 24 3 2022
Statut: ppublish

Résumé

Most insertions or deletions generated by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) endonucleases are short (<25 bp), but unpredictable on-target long DNA deletions (>500 bp) can be observed. The possibility of generating long on-target DNA deletions poses safety risks to somatic genome editing and makes the outcomes of genome editing less predictable. Methods for generating refined mutations are desirable but currently unavailable. Here, we show that fusing Escherichia coli DNA polymerase I or the Klenow fragment to Cas9 greatly increases the frequencies of 1-bp deletions and decreases >1-bp deletions or insertions. Importantly, doing so also greatly decreases the generation of long deletions, including those >2 kb. In addition, templated insertions (the insertion of the nucleotide 4 nt upstream of the protospacer adjacent motif) were increased relative to other insertions. Counteracting DNA resection was one of the mechanisms perturbing deletion sizes. Targeting DNA polymerase to double-strand breaks did not increase off-targets or base substitution rates around the cleavage sites, yet increased editing efficiency in primary cells. Our strategy makes it possible to generate refined DNA mutations for improved safety without sacrificing efficiency of genome editing.

Identifiants

pubmed: 35323942
pii: 6552087
doi: 10.1093/nar/gkac186
pmc: PMC9023269
doi:

Substances chimiques

DNA 9007-49-2
DNA-Directed DNA Polymerase EC 2.7.7.7
CRISPR-Associated Protein 9 EC 3.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3944-3957

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Nucleic Acids Res. 2013 Nov;41(20):9584-92
pubmed: 23939622
Nat Biotechnol. 2018 Nov 27;:
pubmed: 30480667
Cell Discov. 2019 Oct 1;5:53
pubmed: 31636963
Nat Commun. 2021 Aug 10;12(1):4843
pubmed: 34376693
FEBS J. 2021 Dec;288(24):7230-7242
pubmed: 33786971
Proc Natl Acad Sci U S A. 1971 Dec;68(12):2954-7
pubmed: 4943548
Gene Ther. 2020 Jun;27(6):281-296
pubmed: 32020049
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5505-5513
pubmed: 30819891
Protein Cell. 2015 May;6(5):363-372
pubmed: 25894090
Science. 2013 Feb 15;339(6121):823-6
pubmed: 23287722
Biochem Biophys Res Commun. 1969 Dec 4;37(6):982-9
pubmed: 4982877
ACS Synth Biol. 2020 Jul 17;9(7):1911-1916
pubmed: 32485105
Mol Cell. 2018 Aug 16;71(4):498-509.e4
pubmed: 30033371
Nature. 1996 Feb 1;379(6564):445-9
pubmed: 8559248
Genome Biol. 2018 Oct 19;19(1):170
pubmed: 30340517
PLoS One. 2020 Sep 24;15(9):e0239468
pubmed: 32970732
J Biol Chem. 2018 Jul 6;293(27):10536-10546
pubmed: 29530982
Nat Med. 2018 Jul;24(7):939-946
pubmed: 29892062
Sci Rep. 2016 Mar 04;6:22555
pubmed: 26939770
Nature. 2018 Aug;560(7717):248-252
pubmed: 30069054
Nucleic Acids Res. 2018 Sep 19;46(16):8275-8298
pubmed: 29947794
Mol Cell Biol. 2008 Aug;28(16):5082-92
pubmed: 18541667
Nature. 2007 Nov 22;450(7169):509-14
pubmed: 17965729
Nature. 2018 Aug;560(7716):112-116
pubmed: 30022158
Nature. 2014 Oct 2;514(7520):122-5
pubmed: 25231868
Bioinformatics. 2017 Jan 15;33(2):286-288
pubmed: 27559154
Nat Biotechnol. 2018 Sep;36(8):765-771
pubmed: 30010673
Nat Rev Mol Cell Biol. 2017 Aug;18(8):495-506
pubmed: 28512351
Mol Cell. 2016 Aug 18;63(4):633-646
pubmed: 27499295
Cell Rep. 2021 Sep 28;36(13):109756
pubmed: 34592150
Nature. 2018 Nov;563(7733):646-651
pubmed: 30405244
Nature. 2019 Dec;576(7785):149-157
pubmed: 31634902
Mol Cell. 2019 Feb 21;73(4):699-713.e6
pubmed: 30554945
Nat Biotechnol. 2013 Mar;31(3):230-2
pubmed: 23360966
Nature. 2017 Nov 23;551(7681):464-471
pubmed: 29160308
Nat Biotechnol. 2019 Mar;37(3):224-226
pubmed: 30809026
Nature. 2016 Apr 20;533(7603):420-4
pubmed: 27096365
Science. 2016 Sep 16;353(6305):
pubmed: 27492474
Nat Commun. 2020 Aug 14;11(1):4077
pubmed: 32796846
Eur J Biochem. 1974 Jun 15;45(2):623-7
pubmed: 4605373
Cell. 2021 Oct 28;184(22):5653-5669.e25
pubmed: 34672952
Nat Med. 2018 Jul;24(7):927-930
pubmed: 29892067
Am J Hum Genet. 1989 Dec;45(6):835-47
pubmed: 2573997
Proc Natl Acad Sci U S A. 1970 Jan;65(1):168-75
pubmed: 4905667
CRISPR J. 2021 Dec;4(6):914-928
pubmed: 33733873
Exp Mol Med. 2020 Oct;52(10):1705-1714
pubmed: 33122806
PLoS One. 2017 May 11;12(5):e0177444
pubmed: 28494027
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2040-E2047
pubmed: 29440496
Mol Ther Nucleic Acids. 2020 Sep 4;21:523-526
pubmed: 32711379
J Biol Chem. 1978 Jan 25;253(2):413-23
pubmed: 338607
J Biol Chem. 2001 Jun 1;276(22):18836-42
pubmed: 11278911
Nature. 2018 Aug;560(7717):E8-E9
pubmed: 30089922
J Biol Chem. 1992 Apr 25;267(12):8417-28
pubmed: 1569092
Nat Commun. 2021 Sep 27;12(1):5664
pubmed: 34580310
J Biol Chem. 1982 Feb 25;257(4):1958-64
pubmed: 6276402
Environ Mol Mutagen. 2012 Dec;53(9):741-51
pubmed: 22987211
Science. 2013 Feb 15;339(6121):819-23
pubmed: 23287718
Nature. 2018 Aug;560(7717):E5-E7
pubmed: 30089924
Nucleic Acids Res. 2019 Aug 22;47(14):7402-7417
pubmed: 31127293
J Biol Chem. 1973 Nov 25;248(22):7717-23
pubmed: 4584339
Elife. 2013 Jan 29;2:e00471
pubmed: 23386978

Auteurs

Kyung W Yoo (KW)

Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA.

Manish Kumar Yadav (MK)

Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA.

Qianqian Song (Q)

Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.

Anthony Atala (A)

Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA.

Baisong Lu (B)

Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA.

Articles similaires

Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
DNA Methylation Humans DNA Animals Machine Learning
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair
Gene Editing Climate Change Africa South of the Sahara Crops, Agricultural Agriculture

Classifications MeSH