An action potential initiation mechanism in distal axons for the control of dopamine release.


Journal

Science (New York, N.Y.)
ISSN: 1095-9203
Titre abrégé: Science
Pays: United States
ID NLM: 0404511

Informations de publication

Date de publication:
25 03 2022
Historique:
entrez: 24 3 2022
pubmed: 25 3 2022
medline: 8 4 2022
Statut: ppublish

Résumé

Information flow in neurons proceeds by integrating inputs in dendrites, generating action potentials near the soma, and releasing neurotransmitters from nerve terminals in the axon. We found that in the striatum, acetylcholine-releasing neurons induce action potential firing in distal dopamine axons. Spontaneous activity of cholinergic neurons produced dopamine release that extended beyond acetylcholine-signaling domains, and traveling action potentials were readily recorded from dopamine axons in response to cholinergic activation. In freely moving mice, dopamine and acetylcholine covaried with movement direction. Local inhibition of nicotinic acetylcholine receptors impaired dopamine dynamics and affected movement. Our findings uncover an endogenous mechanism for action potential initiation independent of somatodendritic integration and establish that this mechanism segregates the control of dopamine signaling between axons and somata.

Identifiants

pubmed: 35324301
doi: 10.1126/science.abn0532
pmc: PMC9081985
mid: NIHMS1785299
doi:

Substances chimiques

Receptors, Nicotinic 0
Acetylcholine N9YNS0M02X
Dopamine VTD58H1Z2X

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1378-1385

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS103484
Pays : United States
Organisme : NINDS NIH HHS
ID : P30 NS072030
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS083898
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD105351
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA NS003135
Pays : United States

Références

Nat Methods. 2020 Nov;17(11):1156-1166
pubmed: 33087905
Neuron. 2004 Jul 8;43(1):133-43
pubmed: 15233923
Cell Rep. 2021 Jan 12;34(2):108612
pubmed: 33440142
Nat Neurosci. 2016 Jun;19(6):845-54
pubmed: 27110917
Neuron. 2010 Dec 9;68(5):815-34
pubmed: 21144997
Cell. 2018 Feb 8;172(4):706-718.e15
pubmed: 29398114
Science. 1980 Nov 7;210(4470):654-6
pubmed: 7433992
Nat Neurosci. 2018 Jun;21(6):787-793
pubmed: 29760524
Elife. 2019 Mar 28;8:
pubmed: 30920369
Front Cell Neurosci. 2019 Jul 10;13:317
pubmed: 31354436
Nat Neurosci. 2016 Apr;19(4):578-86
pubmed: 26900925
Brain Res Bull. 1988 Aug;21(2):295-304
pubmed: 2903785
Nature. 2016 Jul 28;535(7613):505-10
pubmed: 27398617
Neuron. 2016 Aug 3;91(3):574-86
pubmed: 27373830
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2180-8
pubmed: 27001837
Science. 2000 Jul 28;289(5479):633-7
pubmed: 10915629
Cell Rep. 2012 Jul 26;2(1):33-41
pubmed: 22840394
Nat Neurosci. 2001 Dec;4(12):1224-9
pubmed: 11713470
Annu Rev Pharmacol Toxicol. 2007;47:699-729
pubmed: 17009926
Neuron. 2020 Aug 19;107(4):667-683.e9
pubmed: 32616470
Cell Rep. 2018 Dec 11;25(11):3148-3157.e3
pubmed: 30540946
Neuron. 2012 Jul 12;75(1):58-64
pubmed: 22794260
Nat Methods. 2020 Nov;17(11):1139-1146
pubmed: 32989318
Neuron. 2005 Feb 17;45(4):575-85
pubmed: 15721243
Nat Neurosci. 2016 Mar;19(3):479-86
pubmed: 26854803
J Neurosci. 2011 Aug 3;31(31):11133-43
pubmed: 21813675
Nat Neurosci. 2011 Feb;14(2):200-7
pubmed: 21150916
J Neurosci. 1990 Oct;10(10):3413-20
pubmed: 2170596
J Neurosci. 2007 Feb 21;27(8):1892-901
pubmed: 17314285
Nat Rev Neurosci. 2021 Jun;22(6):345-358
pubmed: 33837376
J Physiol. 2014 Aug 15;592(16):3559-76
pubmed: 24973407
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13491-6
pubmed: 20616081
Nature. 2018 Feb 8;554(7691):244-248
pubmed: 29420469
J Neurosci. 2014 Jun 18;34(25):8557-69
pubmed: 24948810
J Pharmacol Exp Ther. 1977 Mar;200(3):535-44
pubmed: 850127
J Neurosci. 2009 Jan 14;29(2):444-53
pubmed: 19144844
Science. 2012 Jun 15;336(6087):1458-61
pubmed: 22700932
J Comp Neurol. 2001 Oct 15;439(2):235-47
pubmed: 11596051
Eur J Neurosci. 1996 Nov;8(11):2428-39
pubmed: 8950106

Auteurs

Changliang Liu (C)

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

Xintong Cai (X)

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

Andreas Ritzau-Jost (A)

Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany.

Paul F Kramer (PF)

Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Yulong Li (Y)

State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.

Zayd M Khaliq (ZM)

Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Stefan Hallermann (S)

Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany.

Pascal S Kaeser (PS)

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH