Mechanistic modeling and simulation of a complex low and high loading elution behavior of a polypeptide in cation exchange chromatography.
cation exchange chromatography
mechanistic modeling
polypeptide
preparative chromatography
self-association isotherm
Journal
Journal of separation science
ISSN: 1615-9314
Titre abrégé: J Sep Sci
Pays: Germany
ID NLM: 101088554
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
revised:
18
03
2022
received:
31
01
2022
accepted:
18
03
2022
pubmed:
26
3
2022
medline:
30
6
2022
entrez:
25
3
2022
Statut:
ppublish
Résumé
The mechanistic modeling of preparative liquid chromatography is still a challenging task. Nonideal thermodynamic conditions may require activity coefficients for the mechanistic description of preparative chromatography. In this work, a chromatographic cation exchange step with a polypeptide having a complex elution behavior in low and high loading situations is modeled. Model calibration in the linear range of the isotherm is done by applying counterion-induced linear gradient elution experiments between pH 3.3 and 4.3. Inverse fitting with column loads up to 25 mg/mL
Identifiants
pubmed: 35332679
doi: 10.1002/jssc.202200098
doi:
Substances chimiques
Cations
0
Peptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2008-2023Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
Jozala AF, Geraldes DC, Tundisi LL, Feitosa VdA, Breyer CA, Cardoso SL, Mazzola PG, Oliveira-Nascimento Ld, Rangel-Yagui CdO, Magalhães PdO, Oliveira MAd, Pessoa A. Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol. 2016;47:51-63.
Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27:26-34.
Baumann P, Hubbuch J. Downstream process development strategies for effective bioprocesses: trends, progress, and combinatorial approaches. Eng Life Sci. 2017;17:1142-58.
Huuk TC, Hahn T, Doninger K, Griesbach J, Hepbildikler S, Hubbuch J. Modeling of complex antibody elution behavior under high protein load densities in ion exchange chromatography using an asymmetric activity coefficient. Biotechnol J. 2017;12:1600336.
Creasy A, Barker G, Yao Y, Carta G. Systematic interpolation method predicts protein chromatographic elution from batch isotherm data without a detailed mechanistic isotherm model. Biotechnol J. 2015;10:1400-11.
Creasy A, Barker G, Carta G. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients. Biotechnol J. 2017;12:1600636.
Creasy A, Reck J, Pabst T, Hunter A, Barker G, Carta G. Systematic interpolation method predicts antibody monomer-dimer separation by gradient elution chromatography at high protein loads. Biotechnol J. 2019;14:1800132.
Mollerup JM, Hansen TB, Frederiksen SS, Staby A. Thermodynamic modeling of chromatographic separation. Bosa Roca: CRC Press Taylor & Francis Group; 2010.
Pitzer KS. Activity coefficients in electrolyte solutions. 2nd edition. Boca Raton: CRC Press; 2017.
Debye P, Hückel E. Zur Theorie der Elektrolyte. Phys Z. 1923;9:185-206.
Davies CW. Ion association. London: Butterworths; 1962.
Bromley LA. Thermodynamic properties of strong electrolytes in aqueous solutions. AICHE J. 1973;19:313-20.
Mollerup JM. Applied thermodynamics: a new frontier for biotechnology. Fluid Phase Equilib. 2006;241:205-15.
Mollerup JM, Breil MP, Vogelpohl C, Sadowski G. Simultaneous correlation of hydrophobic interactions in HIC and protein solubility in aqueous salt solutions and mixed solvents. Fluid Phase Equilib. 2011;301:163-70.
Agena SM, Bogle ID, Pessoa FL. An activity coefficient model for proteins. Biotechnol Bioeng. 1997;55:65-71.
Ree FH, Hoover WG. Fifth and sixth virial coefficients for hard spheres and hard disks. J Chem Phys. 1964;40:939-50.
Boublík T. Two-dimensional convex particle liquid. Mol Phys. 1975;29:421-8.
Lebowitz JL, Helfand E, Praestgaard E. Scaled particle theory of fluid mixtures. J Chem Phys. 1965;43:774-9.
Chatelier RC, Minton AP. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J. 1996;71:2367-74.
Li Y-L, Pinto NG. Influence of lateral interactions on preparative protein chromatography: I. Isotherm behavior. J Chromatogr A. 1994;658:445-57.
Li Y, Pinto NG. Model for ion-exchange equilibria of macromolecules in preparative chromatography. J Chromatogr A. 1995;702:113-23.
Talu O, Zwiebel I. Multicomponent adsorption equilibria of nonideal mixtures. AICHE J. 1986;32:1263-76.
Wilson GM. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J Am Chem Soc. 1964;86:127-30.
Margules M. Über die Zusammensetzung der gesättigten Dämpfe von Mischungen. Sitzungsberatungen der Akademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche Klasse. 1895;104:1243-78.
Aniceto JPS, Cardoso SP, Faria TL, Lito PF, Silva CM. Modeling ion exchange equilibrium: analysis of exchanger phase non-ideality. Desalination. 2012;290:43-53.
Jen S-CD, Pinto NG. Nonlinear chromatography of beta-lactoglobins A and B non-Langmurian behaviour. Ind Eng Chem Res. 1995;34:2685-91.
Mollerup JM. Modelling oligomer formation in chromatographic separations. J Chromatogr A. 2011;1218:8869-73.
Blanco R, Arai A, Grinberg N, Yarmush M, Karger BL. Role of association on protein adsorption isotherms: β-lactoglobulin A adsorbed on a weakly hydrophobic surface. J Chromatogr A. 1989;482:1-12.
Lemque R, Jaulmes A, Sébille B, Vidal-Madjar C, Cysewski P. Study of the adsorption of self-associating proteins on an anion exchanger: application to the chromatography of β-lactoglobulin B. J Chromatogr A. 1992;599:255-65.
Mollerup JM. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms. Chem Eng Technol. 2008;31:864-74.
Mollerup JM. Adsorption isotherms: fundamentals and modeling aspects. In: Preparative chromatography for separation of proteins. Hoboken: Wiley; 2017. pp. 11-79.
Brooks CA, Cramer SM. Steric mass-action ion exchange: displacement profiles and induced salt gradients. AICHE J. 1992;38:1969-78.
Yamamoto S, Nakanishi K, Matsuno R, Kamikubo T. Ion exchange chromatography of proteins-prediction of elution curves and operating conditions. I. Theoretical considerations. Biotechnol Bioeng. 1983;25:1465-83.
Yamamoto S, Nakanishi K, Matsuno R. Ion-exchange chromatography of proteins. New York, NY: Taylor & Francis Inc.; 1988.
Schmidt M, Hafner M, Frech C. Modeling of salt and pH gradient elution in ion-exchange chromatography. J Sep Sci. 2014;37:5-13.
Ribeiro JM, Sillero A. An algorithm for the computer calculation of the coefficients of a polynomial that allows determination of isoelectric points of proteins and other macromolecules. Comput Biol Med. 1990;20:235-42.
Meireles Ribeiro J, Sillero A. A program to calculate the isoelectric point of macromolecules. Comput Biol Med. 1991;21:131-41.
Lee YF, Graalfs H, Frech C. Thermodynamic modeling of protein retention in mixed-mode chromatography: an extended model for isocratic and dual gradient elution chromatography. J Chromatogr A. 2016;1464:87-101.
Pedersen L, Mollerup J, Hansen E, Jungbauer A. Whey proteins as a model system for chromatographic separation of proteins. J Chromatogr B. 2003;790:161-73.
Seidel-Morgenstern A, Schmidt-Traub H, Michel M, Epping A, Jupke A. Modeling and model parameters. In: Preparative chromatography. Weinem: Wiley; 2012. pp. 321-424.
Schweiger S, Jungbauer A. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects. J Chromatogr A. 2018;1537:66-74.
Seidel-Morgenstern A, Schulte M, Epping A, Fundamentals and general terminology. In: Schmidt-Traub H, Schulte M, & Seidel-Morgenstern A, editors. Preparative chromatography. Weinheim: Wiley-VCH; 2012. pp. 7-46.
Tugcu N, Bae SS, Moore JA, Cramer SM. Stationary phase effects on the dynamic affinity of low-molecular-mass displacers. J Chromatogr A. 2002;954:127-35.
Osberghaus A, Hepbildikler S, Nath S, Haindl M, von Lieres E, Hubbuch J. Determination of parameters for the steric mass action model-a comparison between two approaches. J Chromatogr A. 2012;1233:54-65.
Guiochon G, Felinger A, Shirazi DG, Katti AM. Fundamentals of preparative and nonlinear chromatography. 2nd Edition. San Diego: Elsevier Academic Press; 2006.
Mollerup JM. Chemical engineering thermodynamics and protein adsorption chromatography. J Chem Eng Data. 2013;59:991-8.
Mollerup JrM, Hansen TB, Kidal S, Sejergaard L, Hansen E, Staby A. Use of quality by the design for the modelling of chromatographic separations. J Liq Chromatogr Rel Technol. 2009;32:1577-97.
Yamamoto S, Nakanishi K, Matsuno R, Kamijubo T. Ion exchange chromatography of proteins-predictions of elution curves and operating conditions. II. Experimental verification. Biotechnol Bioeng. 1983;25:1373-91.
Ishihara T, Yamamotob S. Optimization of monoclonal antibody purification by ion-exchange chromatography. Application of simple methods with linear gradient elution experimental data. J Chromatogr A. 2005;1069:99-106.
Westerberg K, Broberg Hansen E, Degerman M, Budde Hansen T, Nilsson B. Model-based process challenge of an industrial ion-exchange chromatography step. Chem Eng Technol. 2012;35:183-90.
Nfor BK, Noverraz M, Chilamkurthi S, Verhaert PDEM, van der Wielen LAM, Ottens M. High-throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed mode adsorbents. J Chromatogr A. 2010;1217:6829-50.
Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1982;54:2201-18.
Saleh D, Wang G, Muller B, Rischawy F, Kluters S, Studts J, Hubbuch J. Straightforward method for calibration of mechanistic cation exchange chromatography models for industrial applications. Biotechnol Prog. 2020;36:2984.
Rischawy F, Saleh D, Hahn T, Oelmeier S, Spitz J, Kluters S. Good modeling practice for industrial chromatography: mechanistic modeling of ion exchange chromatography of a bispecific antibody. Comput Chem Eng. 2019;130:106532.