Enantio-, Diastereo- and Regioselective Synthesis of Chiral Cyclic and Acyclic gem-Difluoromethylenes by Palladium-Catalyzed [4+2] Cycloaddition.

Asymmetric Catalysis Cycloaddition Enantioselectivity Palladium gem-Difluoroalkyl

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
13 06 2022
Historique:
received: 27 12 2021
pubmed: 29 3 2022
medline: 31 5 2022
entrez: 28 3 2022
Statut: ppublish

Résumé

gem-Difluoromethylene moieties are attractive in medicinal chemistry due to their ability to mimic other more ubiquitous functional groups. Thus, effective asymmetric methods for their construction are highly desirable, especially for the industrial production of chiral drugs. Using a Pd-catalyzed asymmetric [4+2] cycloaddition between substituted-2-alkylidenetrimethylene carbonates and gem-difluoroalkyl ketones, we were able to easily access chiral 1,3-dioxanes that contain a tetrasubstituted difluoroalkyl stereogenic center in cyclic and acyclic skeletons. A novel phosphoramidite ligand, which contains a bulky 1,1-dinaphthylmethanamino moiety, was developed to provide the products in high yield with excellent enantio-, diastereo-, and regioselectivity. Strikingly, the gem-difluoro substitution pattern promotes the reaction, and pentafluoroethylketone, an α,α-difluorinated β-ketoester, and a β-ketosulfone are suitable substrates for this method.

Identifiants

pubmed: 35344247
doi: 10.1002/anie.202117635
doi:

Substances chimiques

Hydrocarbons, Fluorinated 0
Palladium 5TWQ1V240M
difluoromethane 77JW9K722X

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202117635

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

 
S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330;
J. Wang, M. Sánchez-Rosell, J. L. Aceña, C. Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432-2506;
E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-8359.
 
H. Mei, A. M. Remete, Y. Zou, H. Moriwaki, S. Fustero, L. Kiss, V. A. Soloshonok, J. Han, Chin. Chem. Lett. 2020, 31, 2401-2413;
B. M. Johnson, Y.-Z. Shu, X. Zhuo, N. A. Meanwell, J. Med. Chem. 2020, 63, 6315-6386.
M. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633-10640.
 
O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475-4521;
W. Zhu, J. Wang, S. Wang, Z. Gu, J. L. Acena, K. Izawa, H. Liu, V. A. Soloshonok, J. Fluorine Chem. 2014, 167, 37-54;
C. Alonso, E. M. Marigorta, G. Rubiales, F. Palacios, Chem. Rev. 2015, 115, 1847-1935.
 
X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826-870;
Z. Feng, Y.-L. Xiao, X. Zhang, Acc. Chem. Res. 2018, 51, 2264-2278;
F. Gao, B. Li, Y. Wang, Q. Chen, Y. Li, K. Wang, W. Yan, Org. Chem. Front. 2021, 8, 2799.
 
N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591;
N. A. Meanwell, J. Med. Chem. 2018, 61, 5822-5880;
L. An, C. Xu, X. Zhang, Nat. Commun. 2017, 8, 1460;
C. Li, Y.-X. Cao, R. Wang, Y.-N. Wang, Q. Lan, X.-S. Wang, Nat. Commun. 2018, 9, 4951;
M. Nambo, J. C.-H. Yim, L. B. O. Freitas, Y. Tahara, Z. T. Ariki, Y. Maekawa, D. Yokogawa, C. M. Crudden, Nat. Commun. 2019, 10, 4528;
M. Taj Muhammad, Y. Jiao, C. Ye, M.-F. Chiou, M. Israr, X. Zhu, Y. Li, Z. Wen, A. Studer, H. Bao, Nat. Commun. 2020, 11, 416;
X.-S. Hu, J.-X. He, S. Z. Dong, Q.-H. Zhao, J.-S. Yu, J. Zhou, Nat. Commun. 2020, 11, 5500;
F. Ye, Y. Ge, A. Spannenberg, H. Neumann, L.-W. Xu, M. Beller, Nat. Commun. 2021, 12, 3257;
X. Cheng, X. Liu, S. Wang, Y. Hu, B. Hu, A. Lei, J. Li, Nat. Commun. 2021, 12, 4366.
J. Cuppoletti, D. H. Malinowska, K. P. Tewari, Q. Li, A. M. Sherry, M. L. Patchen, R. Ueno, Am. J. Physiol. Cell Physiol. 2004, 287, 1173-1183.
W. J. Hoekstra, E. P. Garvey, W. R. Moore, S. W. Rafferty, C. M. Yates, R. J. Schotzinger, Bioorg. Med. Chem. Lett. 2014, 24, 3455-3458.
A. Kruczynski, F. Colpaert, J.-P. Tarayre, P. Mouillard, J. Fahy, B. T. Hill, Cancer Chemother. Pharmacol. 1998, 41, 437-447.
L. Toschi, G. Finocchiaro, S. Bartolini, V. Gioia, F. Cappuzzo, Future Oncol. 2005, 1, 7-17.
 
C. Ni, F. Wang, J. Hu, Beilstein J. Org. Chem. 2008, 4, 21;
P. Zhang, C. Wolf, Angew. Chem. Int. Ed. 2013, 52, 7869-7873;
Angew. Chem. 2013, 125, 8023-8027;
Y.-L. Liu, J.-S. Yu, J. Zhou, Asian J. Org. Chem. 2013, 2, 194-206;
Y. Zhu, J. Han, J. Wang, N. Shibata, M. Sodeoka, V. A. Soloshonok, J. A. S. Coelho, F. D. Toste, Chem. Rev. 2018, 118, 3887-3964;
X. Gao, R. Cheng, Y.-L. Xiao, X.-L. Wan, X. Zhang, Chem 2019, 5, 2987-2999;
J. Liu, L. Yu, C. Zheng, G. Zhao, Angew. Chem. Int. Ed. 2021, 60, 23641-23645;
Angew. Chem. 2021, 133, 23833-23837.
 
L.-S. Yu, F.-M. Liao, W.-M. Gao, K. Liao, R.-L. Zuo, J. Zhou, Angew. Chem. Int. Ed. 2015, 54, 7381-7385;
Angew. Chem. 2015, 127, 7489-7493;
S. M. Banik, J. W. Medley, E. N. Jacobsen, Science 2016, 353, 51-54;
J. Liu, W. Ding, Q.-Q. Zhou, D. Liu, L.-Q. Lu, W.-J. Xiao, Org. Lett. 2018, 20, 461-464;
E. Miller, S. Kim, K. Gibson, J. S. Derrick, F. D. Toste, J. Am. Chem. Soc. 2020, 142, 8946-8952;
M.-Y. Rong, J.-S. Li, Y. Zhou, F.-G. Zhang, J.-A. Ma, Org. Lett. 2020, 22, 9010-9015;
S. Huang, F.-F. Tong, D.-C. Bai, G.-P. Zhang, Y.-J. Jiang, B. Zhang, X. Leng, Y.-L. Guo, X.-L. Wan, X. Zhang, C.-H. Ding, X.-L. Hou, Nat. Commun. 2021, 12, 6551.
B. M. Trost, S. A. King, T. Schmidt, J. Am. Chem. Soc. 1989, 111, 5902-5915.
B. M. Trost, S. M. Silverman, J. P. Stambuli, J. Am. Chem. Soc. 2007, 129, 12398-12399.
 
I. Shimizu, Y. Ohashi, J. Tsuji, Tetrahedron Lett. 1985, 26, 3825-3828;
C. Larksarp, H. Alper, J. Org. Chem. 1999, 64, 4152-4158;
R. Shintani, M. Murakami, T. Hayashi, J. Am. Chem. Soc. 2007, 129, 12356-12357;
C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118-8119;
A. Khan, L. Yang, J. Xu, L. Y. Jin, Y. J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 11257-11260;
Angew. Chem. 2014, 126, 11439-11442;
Q.-L. Zhang, Q. Xiong, M.-M. Li, W. Xiong, B. Shi, Y. Lan, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2020, 59, 14096-14100;
Angew. Chem. 2020, 132, 14200-14204;
B. M. Trost, Z. Jiao, Y. Liu, C. Min, C.-I. J. Hung, J. Am. Chem. Soc. 2020, 142, 18628-18636;
Y. Zheng, T. Qin, W. Zi, J. Am. Chem. Soc. 2021, 143, 1038-1045;
B. Niu, Y. Wei, M. Shi, Org. Chem. Front. 2021, 8, 3475-3501.
 
R. Shintani, Bull. Chem. Soc. Jpn. 2012, 85, 931-939;
T.-R. Li, Y.-N. Wang, W.-J. Xiao, L.-Q. Lu, Tetrahedron Lett. 2018, 59, 1521-1530;
B. M. Trost, G. Mata, Acc. Chem. Res. 2020, 53, 1293-1305;
Q.-Z. Li, Y. Liu, M.-Z. Li, X. Zhang, T. Qi, J.-L. Li, Org. Biomol. Chem. 2020, 18, 3638-3648;
J. Wang, S. A. Blaszczyk, X. Li, W. Tang, Chem. Rev. 2021, 121, 110-139;
T. Sarkar, K. Talukdar, B. K. Das, T. A. Shah, B. Debnath, T. Punniyamurthy, Org. Biomol. Chem. 2021, 19, 3776-3790.
R. Shintani, K. Moriya, T. Hayashi, Chem. Commun. 2011, 47, 3057-3059.
Q. Li, R. Pan, M. Wang, H. Yao, A. Lin, Org. Lett. 2021, 23, 2292-2297.
B. Mao, B. H. Liu, Z. Yan, Y. Xu, J. Xu, W. Wang, Y. Wu, H. Guo, Angew. Chem. Int. Ed. 2020, 59, 11316-11320;
Angew. Chem. 2020, 132, 11412-11416.
During preparation of this manuscript, Lu group reported C-type asymmetric [4+2] cycloaddition of substituted-2-alkylidenetrimethylene carbonates (ADTMCs). However, substitution variation of ADTMCs was limited and represented moderate enantioselectivity. See below; M.-M. Li, B.-L. Qu, Y.-Q. Xiao, W.-J. Xiao, L.-Q. Lu, Sci. Bull. 2021, 66, 1719-1722.
 
B. M. Trost, D. A. Bringley, Angew. Chem. Int. Ed. 2013, 52, 4466-4469;
Angew. Chem. 2013, 125, 4562-4565;
B. M. Trost, G. Mata, Angew. Chem. Int. Ed. 2018, 57, 12333-12337;
Angew. Chem. 2018, 130, 12513-12517.
H. Uno, K. Kawai, M. Shiro, N. Shibata, ACS Catal. 2020, 10, 14117-14126.
Y.-J. Wu, N. A. Meanwell, J. Med. Chem. 2021, 64, 9786-9874.
R. M. Gillarda, M. A. Brimble, Org. Biomol. Chem. 2019, 17, 8272-8307.
Deposition Number 2123342 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Deposition Number 2123343 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Deposition Number 2130769 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
 
A. Khan, R. Zheng, Y. Kan, J. Ye, J. Xing, Y. J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 6439-6442;
Angew. Chem. 2014, 126, 6557-6560;
H. Xu, S. Khan, H. Li, X. Wu, Y. J. Zhang, Org. Lett. 2019, 21, 214-217.
Deposition Number 2123344 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Auteurs

Hiroto Uno (H)

Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.

Koki Kawai (K)

Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.

Taichi Araki (T)

Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.

Motoo Shiro (M)

Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan.

Norio Shibata (N)

Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.

Articles similaires

Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Peroxynitrous Acid Animals Escherichia coli Immunotherapy Mice
Colorimetry Captopril Humans Alloys Limit of Detection
Substrate Specificity Peptides Catalysis Hydrolysis Protein Conformation

Classifications MeSH