Chromosome-length genome assembly and linkage map of a critically endangered Australian bird: the helmeted honeyeater.
Journal
GigaScience
ISSN: 2047-217X
Titre abrégé: Gigascience
Pays: United States
ID NLM: 101596872
Informations de publication
Date de publication:
29 03 2022
29 03 2022
Historique:
received:
18
10
2021
revised:
13
01
2022
accepted:
14
02
2022
entrez:
29
3
2022
pubmed:
30
3
2022
medline:
5
4
2022
Statut:
ppublish
Résumé
The helmeted honeyeater (Lichenostomus melanops cassidix) is a Critically Endangered bird endemic to Victoria, Australia. To aid its conservation, the population is the subject of genetic rescue. To understand, monitor, and modulate the effects of genetic rescue on the helmeted honeyeater genome, a chromosome-length genome and a high-density linkage map are required. We used a combination of Illumina, Oxford Nanopore, and Hi-C sequencing technologies to assemble a chromosome-length genome of the helmeted honeyeater, comprising 906 scaffolds, with length of 1.1 Gb and scaffold N50 of 63.8 Mb. Annotation comprised 57,181 gene models. Using a pedigree of 257 birds and 53,111 single-nucleotide polymorphisms, we obtained high-density linkage and recombination maps for 25 autosomes and Z chromosome. The total sex-averaged linkage map was 1,347 cM long, with the male map being 6.7% longer than the female map. Recombination maps revealed sexually dimorphic recombination rates (overall higher in males), with average recombination rate of 1.8 cM/Mb. Comparative analyses revealed high synteny of the helmeted honeyeater genome with that of 3 passerine species (e.g., 32 Hi-C scaffolds mapped to 30 zebra finch autosomes and Z chromosome). The genome assembly and linkage map suggest that the helmeted honeyeater exhibits a fission of chromosome 1A into 2 chromosomes relative to zebra finch. PSMC analysis showed a ∼15-fold decline in effective population size to ∼60,000 from mid- to late Pleistocene. The annotated chromosome-length genome and high-density linkage map provide rich resources for evolutionary studies and will be fundamental in guiding conservation efforts for the helmeted honeyeater.
Sections du résumé
BACKGROUND
The helmeted honeyeater (Lichenostomus melanops cassidix) is a Critically Endangered bird endemic to Victoria, Australia. To aid its conservation, the population is the subject of genetic rescue. To understand, monitor, and modulate the effects of genetic rescue on the helmeted honeyeater genome, a chromosome-length genome and a high-density linkage map are required.
RESULTS
We used a combination of Illumina, Oxford Nanopore, and Hi-C sequencing technologies to assemble a chromosome-length genome of the helmeted honeyeater, comprising 906 scaffolds, with length of 1.1 Gb and scaffold N50 of 63.8 Mb. Annotation comprised 57,181 gene models. Using a pedigree of 257 birds and 53,111 single-nucleotide polymorphisms, we obtained high-density linkage and recombination maps for 25 autosomes and Z chromosome. The total sex-averaged linkage map was 1,347 cM long, with the male map being 6.7% longer than the female map. Recombination maps revealed sexually dimorphic recombination rates (overall higher in males), with average recombination rate of 1.8 cM/Mb. Comparative analyses revealed high synteny of the helmeted honeyeater genome with that of 3 passerine species (e.g., 32 Hi-C scaffolds mapped to 30 zebra finch autosomes and Z chromosome). The genome assembly and linkage map suggest that the helmeted honeyeater exhibits a fission of chromosome 1A into 2 chromosomes relative to zebra finch. PSMC analysis showed a ∼15-fold decline in effective population size to ∼60,000 from mid- to late Pleistocene.
CONCLUSIONS
The annotated chromosome-length genome and high-density linkage map provide rich resources for evolutionary studies and will be fundamental in guiding conservation efforts for the helmeted honeyeater.
Identifiants
pubmed: 35348671
pii: 6554768
doi: 10.1093/gigascience/giac025
pmc: PMC8963300
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NHGRI NIH HHS
ID : UM1 HG009375
Pays : United States
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press GigaScience.
Références
Mol Biol Evol. 2020 Dec 16;37(12):3642-3653
pubmed: 32642779
Bioinformatics. 2014 Oct;30(19):2811-2
pubmed: 24930139
BMC Genomics. 2014 Jul 22;15:623
pubmed: 25052073
Mol Ecol. 2015 Jun;24(11):2610-8
pubmed: 25740414
Genomics. 1991 Sep;11(1):219-22
pubmed: 1765381
BMC Evol Biol. 2014 Feb 03;14:19
pubmed: 24484414
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Genome Res. 2000 Jan;10(1):137-47
pubmed: 10645958
Nat Genet. 2019 Sep;51(9):1321-1329
pubmed: 31477933
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Mol Ecol. 2016 Mar;25(6):1242-58
pubmed: 26820991
Trends Ecol Evol. 2015 Jan;30(1):42-9
pubmed: 25435267
G3 (Bethesda). 2018 Jul 2;8(7):2241-2248
pubmed: 29760201
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736):
pubmed: 29109219
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Mol Ecol. 2014 Aug;23(16):4035-58
pubmed: 24863701
Science. 2017 Apr 7;356(6333):92-95
pubmed: 28336562
Nature. 2010 Apr 1;464(7289):757-62
pubmed: 20360741
Cell Syst. 2016 Jul;3(1):95-8
pubmed: 27467249
Nat Rev Genet. 2020 Aug;21(8):476-492
pubmed: 32472059
Mol Ecol. 1998 Aug;7(8):1071-5
pubmed: 9711866
Mol Phylogenet Evol. 2013 Nov;69(2):313-9
pubmed: 22982435
Cell Syst. 2018 Feb 28;6(2):256-258.e1
pubmed: 29428417
Gigascience. 2019 Nov 1;8(11):
pubmed: 31742600
Bioinformatics. 2017 Jun 01;33(11):1596-1603
pubmed: 28108446
Heredity (Edinb). 2014 Mar;112(3):307-16
pubmed: 24149651
Mol Ecol. 2021 Dec;30(23):6370-6386
pubmed: 33973288
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Trends Genet. 2019 May;35(5):359-370
pubmed: 30948240
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9
pubmed: 14500911
Mol Ecol. 2013 Jun;22(11):3124-40
pubmed: 23701397
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Cell Syst. 2016 Jul;3(1):99-101
pubmed: 27467250
Ecol Evol. 2019 Dec 07;10(1):579-589
pubmed: 31988743
Bioinformatics. 2011 Nov 1;27(21):2987-93
pubmed: 21903627
Nat Rev Genet. 2018 Apr;19(4):220-234
pubmed: 29335644
BMC Bioinformatics. 2006 Feb 09;7:62
pubmed: 16469098
Bioinformatics. 2018 Aug 1;34(15):2666-2669
pubmed: 29547981
Am J Hum Genet. 1999 Dec;65(6):1493-500
pubmed: 10577902
Bioinformatics. 2017 Dec 01;33(23):3726-3732
pubmed: 29036272
Curr Biol. 2019 Aug 19;29(16):2711-2717.e4
pubmed: 31378604
Mol Ecol Resour. 2022 Jan;22(1):239-253
pubmed: 34288508
Mol Ecol Resour. 2020 Mar;20(2):560-578
pubmed: 31821695
Mol Ecol Resour. 2020 Mar;20(2):544-559
pubmed: 31912659
Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3471-6
pubmed: 8622960
Methods Mol Biol. 2012;888:67-89
pubmed: 22665276
Curr Biol. 2015 May 18;25(10):1375-80
pubmed: 25891404
Genome Biol. 2008 Jan 11;9(1):R7
pubmed: 18190707
Nucleic Acids Res. 2013 Jul;41(13):e129
pubmed: 23661685
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Genome Biol Evol. 2017 Oct 1;9(10):2506-2509
pubmed: 28981643
Genome Res. 2017 May;27(5):787-792
pubmed: 28130360
Mol Biol Evol. 2018 Mar 1;35(3):543-548
pubmed: 29220515
Nature. 2011 Jul 13;475(7357):493-6
pubmed: 21753753
G3 (Bethesda). 2018 May 4;8(5):1391-1398
pubmed: 29519939
Genome Res. 2010 Apr;20(4):485-95
pubmed: 20357052
Am Nat. 2020 Feb;195(2):361-379
pubmed: 32017625