Raman scattering enhancement of dielectric microspheres on silicon nitride film.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 03 2022
29 03 2022
Historique:
received:
01
12
2021
accepted:
15
03
2022
entrez:
30
3
2022
pubmed:
31
3
2022
medline:
6
4
2022
Statut:
epublish
Résumé
Circulating light in the total internal reflection within dielectric spheres or disks is called the whispering gallery mode (WGM), which by itself is highly sensitive to its surface and capable of detecting viruses and single atomic ions. The detection site of the sensors using WGM is created by the evanescent light from the circulating light inside spheres. Here we report anomalous Raman scattering enhancement in dielectric microspheres on a silicon nitride (SiN) film. This Raman enhancement occurs at the periphery of the spheres, and a similar ring of light was also observed under a fluorescence microscope. This is caused by the light circulating around the dielectric spheres as in the WGM. We observed anomalously enhanced Raman spectrum at the periphery of 3 μm diameter polystyrene (PS) microspheres on a SiN film using confocal laser Raman microscopy. The wavelength intensity of this enhanced Raman spectrum was accompanied by periodic changes due to interference. These features may lead to the development of high-sensitive sensors and optical devices.
Identifiants
pubmed: 35351962
doi: 10.1038/s41598-022-09315-5
pii: 10.1038/s41598-022-09315-5
pmc: PMC8964696
doi:
Substances chimiques
Silicon Compounds
0
silicon nitride
QHB8T06IDK
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5346Informations de copyright
© 2022. The Author(s).
Références
Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002).
doi: 10.1063/1.1482797
Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).
pubmed: 17615303
doi: 10.1126/science.1145002
Baaske, M. D. & Vollmer, F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photon. 10, 733–739 (2016).
doi: 10.1038/nphoton.2016.177
Heshmati, S., Abedi, K. & Darvish, G. High-Q microsphere integrated with a tapered fiber suitable for biosensing applications. Opt. Quant. Elect. 51, 273 (2019).
doi: 10.1007/s11082-019-1986-6
Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).
doi: 10.1364/JOSAB.16.000147
Ilchenko, V. S., Yao, X. S. & Maleki, L. Pigtailing the high-Q microsphere cavity: A simple fiber coupler for optical whispering-gallery modes. Opt. Lett. 24, 723–725 (1999).
pubmed: 18073834
doi: 10.1364/OL.24.000723
Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).
pubmed: 12906659
doi: 10.1103/PhysRevLett.91.043902
Ghulinyan, M. et al. Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator. Opt. Express 16, 13218–13224 (2008).
pubmed: 18711559
doi: 10.1364/OE.16.013218
Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009).
doi: 10.1016/S1369-7021(09)70318-9
Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).
pubmed: 23443555
doi: 10.1038/ncomms2538
Preston, T. C. & Reid, J. P. Determining the size and refractive index of microspheres using the mode assignments from Mie resonances. J. Opt. Soc. Am. A 32, 2210–2217 (2015).
doi: 10.1364/JOSAA.32.002210
Savo, R. et al. Broadband Mie driven random quasi-phase-matching. Nat. Photon. 14, 740–747 (2020).
doi: 10.1038/s41566-020-00701-x
Nie, S. & Emery, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).
pubmed: 9027306
doi: 10.1126/science.275.5303.1102
Haynes, C. L. & Van Duyne, R. P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003).
doi: 10.1021/jp027749b
Deng, Z., Chen, M. & Wu, L. Novel method to fabricate SiO
doi: 10.1021/jp073632h
Alessandri, I. Enhancing Raman scattering without plasmons: Unprecedented sensitivity achieved by TiO
pubmed: 23560442
doi: 10.1021/ja401666p
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).
pubmed: 27856851
doi: 10.1126/science.aag2472
Alessandri, I. & Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 116, 14921–14981 (2016).
pubmed: 27739670
doi: 10.1021/acs.chemrev.6b00365
Raza, S. & Kristensen, A. Raman scattering in high-refractive-index nanostructures. Nanophotonics 10, 1197–1209 (2021).
doi: 10.1515/nanoph-2020-0539
Baer, T. Continuous-wave laser oscillation in a Nd:YAG sphere. Opt. Lett. 12, 392–394 (1987).
pubmed: 19741742
doi: 10.1364/OL.12.000392
Kuwata-Gonokami, M., Takeda, K., Yasuda, H. & Ema, K. Laser emission from dye-doped polystyrene microsphere. Jpn. J. Appl. Phys. 31, L99–L101 (1992).
doi: 10.1143/JJAP.31.L99
McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).
doi: 10.1063/1.106688
Sandoghdar, V. et al. Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A 54, R1777–R1780 (1996).
pubmed: 9913762
doi: 10.1103/PhysRevA.54.R1777
Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).
pubmed: 11832940
doi: 10.1038/415621a
Campillo, A. J., Eversole, J. D. & Lin, H. B. Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets. Phys. Rev. Lett. 67, 437–440 (1991).
pubmed: 10044894
doi: 10.1103/PhysRevLett.67.437
Vernooy, D. W., Furusawa, A., Georgiades, N. P., Ilchenko, V. S. & Kimble, H. J. Cavity QED with high-Q whispering gallery modes. Phys. Rev. A 57, R2293–R2296 (1998).
doi: 10.1103/PhysRevA.57.R2293
Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).
pubmed: 12606995
doi: 10.1038/nature01371
Ogura, T. Direct observation of unstained biological specimens in water by the frequency transmission electric-field method using SEM. PLoS ONE 9, e92780 (2014).
pubmed: 24651483
pmcid: 3961424
doi: 10.1371/journal.pone.0092780
Ogura, T. Nanoscale analysis of unstained biological specimens in water without radiation damage using high-resolution frequency transmission electric-field system based on FE-SEM. Biochem. Biophys Res. Commun. 459, 521–528 (2015).
pubmed: 25747717
doi: 10.1016/j.bbrc.2015.02.140
Okada, T. & Ogura, T. Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using scanning electron-assisted dielectric microscopy. Sci. Rep. 6, 29169 (2016).
pubmed: 27375121
pmcid: 4931576
doi: 10.1038/srep29169
Okada, T., Iwayama, T., Murakami, S., Torimura, M. & Ogura, T. Nanoscale observation of PM2.5 incorporated into mammalian cells using scanning electron-assisted dielectric microscope. Sci. Rep. 11, 228 (2021).
pubmed: 33420286
pmcid: 7794539
doi: 10.1038/s41598-020-80546-0
Lei, F., Ward, J. M., Romagnoli, P. & Chormaic, S. N. Polarization-controlled cavity input-output relations. Phys. Rev. Lett. 124, 103902 (2020).
pubmed: 32216405
doi: 10.1103/PhysRevLett.124.103902
Li, X., Chen, Z., Taflove, A. & Backman, V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express 13, 526–533 (2005).
pubmed: 19488381
doi: 10.1364/OPEX.13.000526
Pacheco-Pena, V. & Beruete, M. Photonic nanojets with mesoscale high-index dielectric particles. J. Appl. Phys. 125, 084104 (2019).
doi: 10.1063/1.5086175
Minin, I. V., Geints, Yu. E., Zemlyanov, A. A. & Minin, O. V. Specular-reflection photonic nanojet: Physical basis and optical trapping application. Opt. Express 28, 22690–22704 (2020).
pubmed: 32752525
doi: 10.1364/OE.400460
Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).
doi: 10.1038/nphoton.2017.142
Wang, Z. et al. High order Fano resonances and giant magnetic fields in dielectric microspheres. Sci. Rep. 9, 20293 (2019).
pubmed: 31889112
pmcid: 6937277
doi: 10.1038/s41598-019-56783-3
Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138 (1988).
doi: 10.1002/sca.4950100403
Schopf, J. W. & Kudryavtsev, A. B. Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian. Res. 173, 39–49 (2009).
doi: 10.1016/j.precamres.2009.02.007
Stancovski, V. & Badilescu, S. In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: A historical overview. J. Appl. Electrochem. 44, 23–43 (2014).
doi: 10.1007/s10800-013-0628-0
Nikolov, I. D. & Ivanov, C. D. Optical plastic refractive measurements in the visible and the near-infrared regions. Appl. Optics 39, 2067–2070 (2000).
doi: 10.1364/AO.39.002067
Naglic, P., Zielinsky, Y., Likar, B. & Burmen, M. Determination of refractive index, size, and solid content of monodisperse polystyrene microsphere suspensions for the characterization of optical phantoms. Biomed. Opt. Express 11, 1901–1918 (2020).
pubmed: 32341856
pmcid: 7173914
doi: 10.1364/BOE.387619
Kessels, W. M. M. et al. High-rate deposition of a-SiNx:H for photovoltaic applications by the expanding thermal plasma. J. Vacuum Sci. Technol. A 20, 1704–1715 (2002).
doi: 10.1116/1.1497992
Verlaan, V. et al. The effect of composition on the bond structure and refractive index of silicon nitride deposited by HWCVD and PECVD. Thin Solid Films 517, 3499–3502 (2009).
doi: 10.1016/j.tsf.2009.01.065
Stavenga, D. G. Thin film and multilayer optics cause structural colors of many insects and birds. Mater. Today 1, 109–121 (2014).