Smooth trends in fermium charge radii and the impact of shell effects.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Oct 2024
Historique:
received: 20 12 2023
accepted: 17 09 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: ppublish

Résumé

The quantum-mechanical nuclear-shell structure determines the stability and limits of the existence of the heaviest nuclides with large proton numbers Z ≳ 100 (refs.

Identifiants

pubmed: 39478208
doi: 10.1038/s41586-024-08062-z
pii: 10.1038/s41586-024-08062-z
doi:

Substances chimiques

Isotopes 0
Actinium NIK1K0956U

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1075-1079

Informations de copyright

© 2024. The Author(s).

Références

Nazarewicz, W. The limits of nuclear mass and charge. Nat. Phys. 14, 537–541 (2018).
doi: 10.1038/s41567-018-0163-3
Giuliani, S. A. et al. Colloquium: Superheavy elements: Oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019).
doi: 10.1103/RevModPhys.91.011001
Smits, O. R., Düllmann, Ch. E., Indelicato, P., Nazarewicz, W. & Schwerdtfeger, P. The quest for superheavy elements and the limit of the periodic table. Nat. Rev. Phys. 6, 86–98 (2024).
doi: 10.1038/s42254-023-00668-y
Yang, X., Wang, S., Wilkins, S. & Ruiz, R. G. Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 129, 104005 (2022).
doi: 10.1016/j.ppnp.2022.104005
Block, M., Laatiaoui, M. & Raeder, S. Recent progress in laser spectroscopy of the actinides. Prog. Part. Nucl. Phys. 116, 103834 (2021).
doi: 10.1016/j.ppnp.2020.103834
Brack, M. et al. Funny hills: the shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44, 320–405 (1972).
doi: 10.1103/RevModPhys.44.320
Bender, M., Nazarewicz, W. & Reinhard, P. G. Shell stabilization of super-and hyperheavy nuclei without magic gaps. Phys. Lett. B 515, 42–48 (2001).
doi: 10.1016/S0370-2693(01)00863-2
Reinhard, P. G. & Otten, E. Transition to deformed shapes as a nuclear Jahn–Teller effect. Nucl. Phys. A 420, 173–192 (1984).
doi: 10.1016/0375-9474(84)90437-8
Nazarewicz, W. Microscopic origin of nuclear deformations. Nucl. Phys. A 574, 27–49 (1994).
doi: 10.1016/0375-9474(94)90037-X
Ghiorso, A., Thompson, S. G., Higgins, G. H., Harvey, B. G. & Seaborg, G. T. Evidence for subshell at N = 152. Phys. Rev. 95, 293–295 (1954).
doi: 10.1103/PhysRev.95.293
Minaya-Ramirez, E. et al. Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207–1210 (2012).
pubmed: 22878498 doi: 10.1126/science.1225636
Kaleja, O. et al. Direct high-precision mass spectrometry of superheavy elements with SHIPTRAP. Phys. Rev. C 106, 054325 (2022).
doi: 10.1103/PhysRevC.106.054325
Ito, Y. et al. First direct mass measurements of nuclides around Z = 100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).
pubmed: 29756864 doi: 10.1103/PhysRevLett.120.152501
Makii, H. et al. Z dependence of the N = 152 deformed shell gap: in-beam γ-ray spectroscopy of neutron-rich
doi: 10.1103/PhysRevC.76.061301
Buskirk, L., Godbey, K., Nazarewicz, W. & Satuła, W. Nucleonic shells and nuclear masses. Phys. Rev. C 109, 044311 (2024).
doi: 10.1103/PhysRevC.109.044311
Herzberg, R. D. & Cox, D. M. Spectroscopy of actinide and transactinide nuclei. Radiochim. Acta 99, 441–457 (2011).
doi: 10.1524/ract.2011.1858
Theisen, C., Greenlees, P., Khoo, T. L., Chowdhury, P. & Ishii, T. In-beam spectroscopy of heavy elements. Nucl. Phys. A 944, 333–375 (2015).
doi: 10.1016/j.nuclphysa.2015.07.014
Dobaczewski, J., Afanasjev, A., Bender, M., Robledo, L. & Shi, Y. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals. Nucl. Phys. A 944, 388–414 (2015).
doi: 10.1016/j.nuclphysa.2015.07.015
Bissell, M. L. et al. Cu charge radii reveal a weak sub-shell effect at N = 40. Phys. Rev. C 93, 064318 (2016).
doi: 10.1103/PhysRevC.93.064318
Koszorús, Á. et al. Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32. Nat. Phys. 17, 439–443 (2021).
doi: 10.1038/s41567-020-01136-5
Cheal, B. et al. Nuclear spins and moments of Ga isotopes reveal sudden structural changes between N = 40 and N = 50. Phys. Rev. Lett. 104, 252502 (2010).
pubmed: 20867369 doi: 10.1103/PhysRevLett.104.252502
Marsh, B. et al. Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14, 1163–1167 (2018).
doi: 10.1038/s41567-018-0292-8
Kreim, K. et al. Nuclear charge radii of potassium isotopes beyond N = 28. Phys. Lett. B 731, 97–102 (2014).
doi: 10.1016/j.physletb.2014.02.012
Gorges, C. et al. Laser spectroscopy of neutron-rich tin isotopes: a discontinuity in charge radii across the N = 82 shell closure. Phys. Rev. Lett. 122, 192502 (2019).
pubmed: 31144969 doi: 10.1103/PhysRevLett.122.192502
Reponen, M. et al. Evidence of a sudden increase in the nuclear size of proton-rich silver-96. Nat. Commun. 12, 4596 (2021).
pubmed: 34321487 pmcid: 8319127 doi: 10.1038/s41467-021-24888-x
Goodacre, T. D. et al. Laser spectroscopy of neutron-rich
doi: 10.1103/PhysRevLett.126.032502
Vernon, A. R. et al. Nuclear moments of indium isotopes reveal abrupt change at magic number 82. Nature 607, 260–265 (2022).
pubmed: 35831598 doi: 10.1038/s41586-022-04818-7
Campbell, P., Moore, I. & Pearson, M. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127–180 (2016).
doi: 10.1016/j.ppnp.2015.09.003
Malbrunot-Ettenauer, S. et al. Nuclear charge radii of the nickel isotopes
pubmed: 35089728 doi: 10.1103/PhysRevLett.128.022502
Backe, H. et al. Towards optical spectroscopy of the element nobelium (Z = 102) in a buffer gas cell: first on-line experiments on
Lautenschläger, F. et al. Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP. Nucl. Instrum. Methods B 383, 115–122 (2016).
doi: 10.1016/j.nimb.2016.06.001
Laatiaoui, M. et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016).
pubmed: 27680707 doi: 10.1038/nature19345
Raeder, S. et al. Probing sizes and shapes of nobelium isotopes by laser spectroscopy. Phys. Rev. Lett. 120, 232503 (2018).
pubmed: 29932712 doi: 10.1103/PhysRevLett.120.232503
Raeder, S. et al. Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with radris. Nucl. Instrum. Methods B 541, 370–374 (2023).
doi: 10.1016/j.nimb.2023.04.044
Münzenberg, G. et al. The velocity filter SHIP, a separator of unslowed heavy ion fusion products. Nucl. Instrum. Methods 161, 65–82 (1979).
doi: 10.1016/0029-554X(79)90362-8
Block, M., Giacoppo, F., Heßberger, F. P. & Raeder, S. Recent progress in experiments on the heaviest nuclides at SHIP. Riv. Nuovo Cimento 45, 279–323 (2022).
doi: 10.1007/s40766-022-00030-5
Warbinek, J. et al. Advancing radiation-detected resonance ionization towards heavier elements and more exotic nuclides. Atoms 10, 41 (2022).
doi: 10.3390/atoms10020041
Schneider, F. et al. Resonance ionization of holmium for ion implantation in microcalorimeters. Nucl. Instrum. Methods B 376, 388–392 (2016).
doi: 10.1016/j.nimb.2015.12.012
Kron, T., Liu, Y., Richter, S., Schneider, F. & Wendt, K. High efficiency resonance ionization of palladium with Ti:sapphire lasers. J. Phys. B 49, 185003 (2016).
doi: 10.1088/0953-4075/49/18/185003
Nothhelfer, S. et al. Nuclear structure investigations of
doi: 10.1103/PhysRevC.105.L021302
Kieck, T. et al. Highly efficient isotope separation and ion implantation of
doi: 10.1016/j.nima.2019.162602
Sewtz, M. et al. First observation of atomic levels for the element fermium (Z = 100). Phys. Rev. Lett. 90, 163002 (2003).
pubmed: 12731975 doi: 10.1103/PhysRevLett.90.163002
Backe, H. et al. Laser spectroscopic investigation of the element fermium (Z = 100). Hyperfine Interact. 162, 3–14 (2005).
doi: 10.1007/s10751-005-9209-x
Allehabi, S. O., Li, J., Dzuba, V. & Flambaum, V. Theoretical study of electronic structure of erbium and fermium. J. Quant. Spectrosc. Radiat. Transf. 253, 107137 (2020).
doi: 10.1016/j.jqsrt.2020.107137
Myers, W. D. & Schmidt, K. H. An update on droplet-model charge distributions. Nucl. Phys. A 410, 61–73 (1983).
doi: 10.1016/0375-9474(83)90401-3
Berdichevsky, D. & Tondeur, F. Nuclear core densities, isotope shifts, and the parametrization of the droplet model. Z. Phys. A 322, 141–147 (1985).
doi: 10.1007/BF01412027
Dobaczewski, J., Nazarewicz, W. & Reinhard, P. G. Error estimates of theoretical models: a guide. J. Phys. G 41, 074001 (2014).
doi: 10.1088/0954-3899/41/7/074001
Erler, J. & Reinhard, P. G. Error estimates for the Skyrme–Hartree–Fock model. J. Phys. G 42, 034026 (2015).
doi: 10.1088/0954-3899/42/3/034026
Cwiok, S., Heenen, P. H. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705–709 (2005).
pubmed: 15716943 doi: 10.1038/nature03336
Zumbro, J. et al. E2 and E4 deformations in
doi: 10.1016/0370-2693(86)91285-2
Reinhard, P. G., Bender, M., Nazarewicz, W. & Vertse, T. From finite nuclei to the nuclear liquid drop: leptodermous expansion based on self-consistent mean-field theory. Phys. Rev. C 73, 014309 (2006).
doi: 10.1103/PhysRevC.73.014309
Ferrer, R. et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 8, 14520 (2017).
pubmed: 28224987 pmcid: 5322538 doi: 10.1038/ncomms14520
Wang, M., Huang, W., Kondev, F., Audi, G. & Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 45, 030003 (2021).
doi: 10.1088/1674-1137/abddaf
Murböck, T. et al. Filament studies for laser spectroscopy on lawrencium. Hyperfine Interact. 241, 35 (2020).
doi: 10.1007/s10751-019-1689-1
Weber, F. et al. Nuclear moments and isotope shifts of the actinide isotopes
doi: 10.1103/PhysRevC.107.034313
Weber, F. et al. Probing the atomic structure of californium by resonance ionization spectroscopy. Atoms 10, 51 (2022).
doi: 10.3390/atoms10020051
Sonnenschein, V., Moore, I. D., Khan, H., Pohjalainen, I. & Reponen, M. Characterization of a dual-etalon Ti:sapphire laser via resonance ionization spectroscopy of stable copper isotopes. Hyperfine Interact. 227, 113–123 (2014).
doi: 10.1007/s10751-013-1000-9
Sonnenschein, V., Ohashi, M., Tomita, H. & Iguchi, T. A direct diode pumped continuous-wave Ti:sapphire laser as seed of a pulsed amplifier for high-resolution resonance ionization spectroscopy. Nucl. Instrum. Methods B 463, 512–514 (2020).
doi: 10.1016/j.nimb.2019.03.017
Sonnenschein, V. et al. Characterization of a pulsed injection-locked Ti:sapphire laser and its application to high resolution resonance ionization spectroscopy of copper. Laser Phys. 27, 085701 (2017).
doi: 10.1088/1555-6611/aa7834
Verlinde, M. et al. On the performance of wavelength meters: Part 1—consequences for medium-to-high-resolution laser spectroscopy. Appl. Phys. B 126, 1–14 (2020).
doi: 10.1007/s00340-020-07425-4
Khuyagbaatar, J. et al. α decay of
doi: 10.1103/PhysRevC.102.044312
Piot, J. et al. In-beam spectroscopy with intense ion beams: evidence for a rotational structure in
doi: 10.1103/PhysRevC.85.041301
Oganessian, Y. T. et al. Measurements of cross sections for the fusion-evaporation reactions
doi: 10.1103/PhysRevC.64.054606
Eskola, K., Eskola, P., Nurmia, M. & Ghiorso, A. Studies of lawrencium isotopes with mass numbers 255 through 260. Phys. Rev. C 4, 632–642 (1971).
doi: 10.1103/PhysRevC.4.632
Antalic, S. et al. Decay studies of neutron-deficient lawrencium isotopes. Eur. Phys. J. A 38, 219–226 (2008).
doi: 10.1140/epja/i2008-10665-7
Roberto, J. et al. Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99–116 (2015).
doi: 10.1016/j.nuclphysa.2015.06.009
Robinson, S. M. et al. Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochim. Acta 108, 737–746 (2020).
doi: 10.1515/ract-2020-0008
Eichler, B. et al. An atomic beam source for actinide elements: concept and realization. Radiochim. Acta 79, 221–234 (1997).
doi: 10.1524/ract.1997.79.4.221
Heßberger, F. et al. Alpha–gamma decay studies of
doi: 10.1140/epja/i2003-10238-4
Asaro, F., Bjørnholm, S. & Perlman, I. Decay scheme of Fm
doi: 10.1103/PhysRev.133.B291
Ahmad, I. & Horwitz, E. P. Alpha decay of [Formula: see text]Fm. Nucl. Phys. A 373, 434–444 (1982).
doi: 10.1016/0375-9474(82)90543-7
Gins, W. et al. Analysis of counting data: development of the SATLAS Python package. Comput. Phys. Commun. 222, 286–294 (2018).
doi: 10.1016/j.cpc.2017.09.012
Gins, W., van den Borne, B., de Groote, R. & Neyens, G. SATLAS2: an update to the package for analysis of counting data. Comput. Phys. Commun. 297, 109053 (2024).
doi: 10.1016/j.cpc.2023.109053
Heßberger, F. et al. Alpha–gamma decay studies of
doi: 10.1140/epja/i2006-10083-y
Ajayakumar, A. et al. In-gas-jet laser spectroscopy with S
doi: 10.1016/j.nimb.2023.03.020
Granados, C. et al. In-gas laser ionization and spectroscopy of actinium isotopes near the N = 126 closed shell. Phys. Rev. C 96, 054331 (2017).
Heilig, K. & Steudel, A. Changes in mean-square nuclear charge radii from optical isotope shifts. Atom. Data Nucl. Data 14, 613–638 (1974).
doi: 10.1016/S0092-640X(74)80006-9
Bender, M., Heenen, P. H. & Reinhard, P. G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).
doi: 10.1103/RevModPhys.75.121
Schunck, N. (ed.) Energy Density Functional Methods for Atomic Nuclei 2053–2563 (IOP Publishing, 2019); https://doi.org/10.1088/2053-2563/aae0ed .
Goriely, S., Hilaire, S., Girod, M. & Péru, S. First Gogny–Hartree–Fock–Bogoliubov nuclear mass model. Phys. Rev. Lett. 102, 242501 (2009).
pubmed: 19659002 doi: 10.1103/PhysRevLett.102.242501
Ryssens, W., Scamps, G., Goriely, S. & Bender, M. Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: II. Time-reversal symmetry breaking. Eur. Phys. J. A 58, 246 (2022).
doi: 10.1140/epja/s10050-022-00894-5
Klüpfel, P., Reinhard, P. G., Bürvenich, T. J. & Maruhn, J. A. Variations on a theme by Skyrme: a systematic study of adjustments of model parameters. Phys. Rev. C 79, 034310 (2009).
doi: 10.1103/PhysRevC.79.034310
Jodon, R. Ajustements de Fonctionnelles de Skyrme Généralisées. PhD thesis, Univ. Claude Bernard - Lyon 1 (2014); https://tel.archives-ouvertes.fr/tel-01158085 .
Sadoudi, J., Duguet, T., Meyer, J. & Bender, M. Skyrme functional from a three-body pseudopotential of second order in gradients: formalism for central terms. Phys. Rev. C 88, 064326 (2013).
doi: 10.1103/PhysRevC.88.064326
Fayans, S., Tolokonnikov, S., Trykov, E. & Zawischa, D. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49–119 (2000).
doi: 10.1016/S0375-9474(00)00192-5
Reinhard, P. G. & Nazarewicz, W. Toward a global description of nuclear charge radii: exploring the fayans energy density functional. Phys. Rev. C 95, 064328 (2017).
doi: 10.1103/PhysRevC.95.064328
Bally, B. & Bender, M. Projection on particle number and angular momentum: example of triaxial Bogoliubov quasiparticle states. Phys. Rev. C 103, 024315 (2021).
doi: 10.1103/PhysRevC.103.024315
Bally, B., Giacalone, G. & Bender, M. Structure of
doi: 10.1140/epja/s10050-022-00833-4
Bally, B., Giacalone, G. & Bender, M. The shape of gold. Eur. Phys. J. A 59, 58 (2023).
Perez-Martin, S. & Robledo, L. M. Microscopic justification of the equal filling approximation. Phys. Rev. C 78, 014,304 (2008).
doi: 10.1103/PhysRevC.78.014304
Péru, S., Hilaire, S., Goriely, S. & Martini, M. Description of magnetic moments within the Gogny Hartree–Fock–Bogolyubov framework: application to Hg isotopes. Phys. Rev. C 104, 024328 (2021).
doi: 10.1103/PhysRevC.104.024328
Reinhard, P. G. & Nazarewicz, W. Nuclear charge densities in spherical and deformed nuclei: toward precise calculations of charge radii. Phys. Rev. C 103, 054310 (2021).
doi: 10.1103/PhysRevC.103.054310
Reinhard, P. G. & Nazarewicz, W. Nuclear charge and neutron radii and nuclear matter: trend analysis in Skyrme density-functional-theory approach. Phys. Rev. C 93, 051303 (2016).
doi: 10.1103/PhysRevC.93.051303
Rosen, M., Raphael, R. & Überall, H. Generalized Helm model for transverse electroexcitation of nuclear levels. Phys. Rev. 163, 927–934 (1967).
doi: 10.1103/PhysRev.163.927
Warbinek, J. & Fermium Collaboration. Dataset: Laser spectroscopy of fermium isotopes probing trends in nuclear charge radii. Zenodo https://doi.org/10.5281/zenodo.13342174 (2024).
Angeli, I. & Marinova, K. Table of experimental nuclear ground state charge radii: an update. Atom. Data Nucl. Data 99, 69–95 (2013).
doi: 10.1016/j.adt.2011.12.006

Auteurs

Jessica Warbinek (J)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. jessica.warbinek@cern.ch.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany. jessica.warbinek@cern.ch.
Helmholtz-Institut Mainz, Mainz, Germany. jessica.warbinek@cern.ch.
Experimental Physics Department, CERN, Geneva, Switzerland. jessica.warbinek@cern.ch.

Elisabeth Rickert (E)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Sebastian Raeder (S)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. s.raeder@gsi.de.
Helmholtz-Institut Mainz, Mainz, Germany. s.raeder@gsi.de.

Thomas Albrecht-Schönzart (T)

Department of Chemistry, Nuclear Science & Engineering Center, Colorado School of Mines, Golden, CO, USA.

Brankica Andelic (B)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.
University of Groningen, Groningen, The Netherlands.

Julian Auler (J)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Benjamin Bally (B)

ESNT, IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.

Michael Bender (M)

Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I, UMR 5822, Villeurbanne, France.

Sebastian Berndt (S)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Michael Block (M)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Pierre Chauveau (P)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Bradley Cheal (B)

University of Liverpool, Liverpool, UK.

Premaditya Chhetri (P)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Arno Claessens (A)

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Antoine de Roubin (A)

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Charlie Devlin (C)

University of Liverpool, Liverpool, UK.

Holger Dorrer (H)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Christoph E Düllmann (CE)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Julie Ezold (J)

Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Rafael Ferrer (R)

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Vadim Gadelshin (V)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Alyssa Gaiser (A)

Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA.
Department of Chemistry, Michigan State University, East Lansing, MI, USA.

Francesca Giacoppo (F)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Stephane Goriely (S)

Université Libre de Bruxelles, Brussels, Belgium.

Manuel J Gutiérrez (MJ)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Ashley Harvey (A)

Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Raphael Hasse (R)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Reinhard Heinke (R)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Fritz-Peter Heßberger (FP)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.

Stephane Hilaire (S)

CEA, DAM, DIF, Arpajon, France.
Université Paris-Saclay, CEA LMCE, Bruyères-le-Châtel, France.

Magdalena Kaja (M)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Oliver Kaleja (O)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Universität Greifswald, Greifswald, Germany.

Tom Kieck (T)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

EunKang Kim (E)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Nina Kneip (N)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Ulli Köster (U)

Institut Laue-Langevin, Grenoble, France.

Sandro Kraemer (S)

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Mustapha Laatiaoui (M)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Jeremy Lantis (J)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Nathalie Lecesne (N)

GANIL, Caen, France.

Andrea Tzeitel Loria Basto (AT)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Andrew Kishor Mistry (AK)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
TU Darmstadt, Darmstadt, Germany.

Christoph Mokry (C)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Iain Moore (I)

University of Jyväskylä, Jyväskylä, Finland.

Tobias Murböck (T)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Danny Münzberg (D)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Witold Nazarewicz (W)

Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA.
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.

Thorben Niemeyer (T)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Steven Nothhelfer (S)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Sophie Péru (S)

CEA, DAM, DIF, Arpajon, France.
Université Paris-Saclay, CEA LMCE, Bruyères-le-Châtel, France.

Andrea Raggio (A)

University of Jyväskylä, Jyväskylä, Finland.

Paul-Gerhard Reinhard (PG)

Universität Erlangen, Erlangen, Germany.

Dennis Renisch (D)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Emmanuel Rey-Herme (E)

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.

Jekabs Romans (J)

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Elisa Romero Romero (E)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Jörg Runke (J)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Wouter Ryssens (W)

Université Libre de Bruxelles, Brussels, Belgium.

Hervé Savajols (H)

GANIL, Caen, France.

Fabian Schneider (F)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Joseph Sperling (J)

Department of Chemistry, Nuclear Science & Engineering Center, Colorado School of Mines, Golden, CO, USA.

Matou Stemmler (M)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Dominik Studer (D)

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.
Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Petra Thörle-Pospiech (P)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Helmholtz-Institut Mainz, Mainz, Germany.

Norbert Trautmann (N)

Department Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Mitzi Urquiza-González (M)

Division HÜBNER Photonics, HÜBNER, Kassel, Germany.
University of Gothenburg, Gothenburg, Sweden.

Kenneth van Beek (K)

TU Darmstadt, Darmstadt, Germany.

Shelley Van Cleve (S)

Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Piet Van Duppen (P)

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Marine Vandebrouck (M)

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.

Elise Verstraelen (E)

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium.

Thomas Walther (T)

TU Darmstadt, Darmstadt, Germany.

Felix Weber (F)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Klaus Wendt (K)

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.

Articles similaires

Humans Breast Neoplasms Female Mass Spectrometry Adipose Tissue
Environmental Monitoring Aerosols Metals Air Pollutants Finland
Monte Carlo Method Fiber Optic Technology Scattering, Radiation Spectrum Analysis Equipment Design
Humans Extracorporeal Membrane Oxygenation Male Female Middle Aged

Classifications MeSH