Smooth trends in fermium charge radii and the impact of shell effects.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Oct 2024
Oct 2024
Historique:
received:
20
12
2023
accepted:
17
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
ppublish
Résumé
The quantum-mechanical nuclear-shell structure determines the stability and limits of the existence of the heaviest nuclides with large proton numbers Z ≳ 100 (refs.
Identifiants
pubmed: 39478208
doi: 10.1038/s41586-024-08062-z
pii: 10.1038/s41586-024-08062-z
doi:
Substances chimiques
Isotopes
0
Actinium
NIK1K0956U
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1075-1079Informations de copyright
© 2024. The Author(s).
Références
Nazarewicz, W. The limits of nuclear mass and charge. Nat. Phys. 14, 537–541 (2018).
doi: 10.1038/s41567-018-0163-3
Giuliani, S. A. et al. Colloquium: Superheavy elements: Oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019).
doi: 10.1103/RevModPhys.91.011001
Smits, O. R., Düllmann, Ch. E., Indelicato, P., Nazarewicz, W. & Schwerdtfeger, P. The quest for superheavy elements and the limit of the periodic table. Nat. Rev. Phys. 6, 86–98 (2024).
doi: 10.1038/s42254-023-00668-y
Yang, X., Wang, S., Wilkins, S. & Ruiz, R. G. Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 129, 104005 (2022).
doi: 10.1016/j.ppnp.2022.104005
Block, M., Laatiaoui, M. & Raeder, S. Recent progress in laser spectroscopy of the actinides. Prog. Part. Nucl. Phys. 116, 103834 (2021).
doi: 10.1016/j.ppnp.2020.103834
Brack, M. et al. Funny hills: the shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44, 320–405 (1972).
doi: 10.1103/RevModPhys.44.320
Bender, M., Nazarewicz, W. & Reinhard, P. G. Shell stabilization of super-and hyperheavy nuclei without magic gaps. Phys. Lett. B 515, 42–48 (2001).
doi: 10.1016/S0370-2693(01)00863-2
Reinhard, P. G. & Otten, E. Transition to deformed shapes as a nuclear Jahn–Teller effect. Nucl. Phys. A 420, 173–192 (1984).
doi: 10.1016/0375-9474(84)90437-8
Nazarewicz, W. Microscopic origin of nuclear deformations. Nucl. Phys. A 574, 27–49 (1994).
doi: 10.1016/0375-9474(94)90037-X
Ghiorso, A., Thompson, S. G., Higgins, G. H., Harvey, B. G. & Seaborg, G. T. Evidence for subshell at N = 152. Phys. Rev. 95, 293–295 (1954).
doi: 10.1103/PhysRev.95.293
Minaya-Ramirez, E. et al. Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207–1210 (2012).
pubmed: 22878498
doi: 10.1126/science.1225636
Kaleja, O. et al. Direct high-precision mass spectrometry of superheavy elements with SHIPTRAP. Phys. Rev. C 106, 054325 (2022).
doi: 10.1103/PhysRevC.106.054325
Ito, Y. et al. First direct mass measurements of nuclides around Z = 100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).
pubmed: 29756864
doi: 10.1103/PhysRevLett.120.152501
Makii, H. et al. Z dependence of the N = 152 deformed shell gap: in-beam γ-ray spectroscopy of neutron-rich
doi: 10.1103/PhysRevC.76.061301
Buskirk, L., Godbey, K., Nazarewicz, W. & Satuła, W. Nucleonic shells and nuclear masses. Phys. Rev. C 109, 044311 (2024).
doi: 10.1103/PhysRevC.109.044311
Herzberg, R. D. & Cox, D. M. Spectroscopy of actinide and transactinide nuclei. Radiochim. Acta 99, 441–457 (2011).
doi: 10.1524/ract.2011.1858
Theisen, C., Greenlees, P., Khoo, T. L., Chowdhury, P. & Ishii, T. In-beam spectroscopy of heavy elements. Nucl. Phys. A 944, 333–375 (2015).
doi: 10.1016/j.nuclphysa.2015.07.014
Dobaczewski, J., Afanasjev, A., Bender, M., Robledo, L. & Shi, Y. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals. Nucl. Phys. A 944, 388–414 (2015).
doi: 10.1016/j.nuclphysa.2015.07.015
Bissell, M. L. et al. Cu charge radii reveal a weak sub-shell effect at N = 40. Phys. Rev. C 93, 064318 (2016).
doi: 10.1103/PhysRevC.93.064318
Koszorús, Á. et al. Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32. Nat. Phys. 17, 439–443 (2021).
doi: 10.1038/s41567-020-01136-5
Cheal, B. et al. Nuclear spins and moments of Ga isotopes reveal sudden structural changes between N = 40 and N = 50. Phys. Rev. Lett. 104, 252502 (2010).
pubmed: 20867369
doi: 10.1103/PhysRevLett.104.252502
Marsh, B. et al. Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14, 1163–1167 (2018).
doi: 10.1038/s41567-018-0292-8
Kreim, K. et al. Nuclear charge radii of potassium isotopes beyond N = 28. Phys. Lett. B 731, 97–102 (2014).
doi: 10.1016/j.physletb.2014.02.012
Gorges, C. et al. Laser spectroscopy of neutron-rich tin isotopes: a discontinuity in charge radii across the N = 82 shell closure. Phys. Rev. Lett. 122, 192502 (2019).
pubmed: 31144969
doi: 10.1103/PhysRevLett.122.192502
Reponen, M. et al. Evidence of a sudden increase in the nuclear size of proton-rich silver-96. Nat. Commun. 12, 4596 (2021).
pubmed: 34321487
pmcid: 8319127
doi: 10.1038/s41467-021-24888-x
Goodacre, T. D. et al. Laser spectroscopy of neutron-rich
doi: 10.1103/PhysRevLett.126.032502
Vernon, A. R. et al. Nuclear moments of indium isotopes reveal abrupt change at magic number 82. Nature 607, 260–265 (2022).
pubmed: 35831598
doi: 10.1038/s41586-022-04818-7
Campbell, P., Moore, I. & Pearson, M. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127–180 (2016).
doi: 10.1016/j.ppnp.2015.09.003
Malbrunot-Ettenauer, S. et al. Nuclear charge radii of the nickel isotopes
pubmed: 35089728
doi: 10.1103/PhysRevLett.128.022502
Backe, H. et al. Towards optical spectroscopy of the element nobelium (Z = 102) in a buffer gas cell: first on-line experiments on
Lautenschläger, F. et al. Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP. Nucl. Instrum. Methods B 383, 115–122 (2016).
doi: 10.1016/j.nimb.2016.06.001
Laatiaoui, M. et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016).
pubmed: 27680707
doi: 10.1038/nature19345
Raeder, S. et al. Probing sizes and shapes of nobelium isotopes by laser spectroscopy. Phys. Rev. Lett. 120, 232503 (2018).
pubmed: 29932712
doi: 10.1103/PhysRevLett.120.232503
Raeder, S. et al. Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with radris. Nucl. Instrum. Methods B 541, 370–374 (2023).
doi: 10.1016/j.nimb.2023.04.044
Münzenberg, G. et al. The velocity filter SHIP, a separator of unslowed heavy ion fusion products. Nucl. Instrum. Methods 161, 65–82 (1979).
doi: 10.1016/0029-554X(79)90362-8
Block, M., Giacoppo, F., Heßberger, F. P. & Raeder, S. Recent progress in experiments on the heaviest nuclides at SHIP. Riv. Nuovo Cimento 45, 279–323 (2022).
doi: 10.1007/s40766-022-00030-5
Warbinek, J. et al. Advancing radiation-detected resonance ionization towards heavier elements and more exotic nuclides. Atoms 10, 41 (2022).
doi: 10.3390/atoms10020041
Schneider, F. et al. Resonance ionization of holmium for ion implantation in microcalorimeters. Nucl. Instrum. Methods B 376, 388–392 (2016).
doi: 10.1016/j.nimb.2015.12.012
Kron, T., Liu, Y., Richter, S., Schneider, F. & Wendt, K. High efficiency resonance ionization of palladium with Ti:sapphire lasers. J. Phys. B 49, 185003 (2016).
doi: 10.1088/0953-4075/49/18/185003
Nothhelfer, S. et al. Nuclear structure investigations of
doi: 10.1103/PhysRevC.105.L021302
Kieck, T. et al. Highly efficient isotope separation and ion implantation of
doi: 10.1016/j.nima.2019.162602
Sewtz, M. et al. First observation of atomic levels for the element fermium (Z = 100). Phys. Rev. Lett. 90, 163002 (2003).
pubmed: 12731975
doi: 10.1103/PhysRevLett.90.163002
Backe, H. et al. Laser spectroscopic investigation of the element fermium (Z = 100). Hyperfine Interact. 162, 3–14 (2005).
doi: 10.1007/s10751-005-9209-x
Allehabi, S. O., Li, J., Dzuba, V. & Flambaum, V. Theoretical study of electronic structure of erbium and fermium. J. Quant. Spectrosc. Radiat. Transf. 253, 107137 (2020).
doi: 10.1016/j.jqsrt.2020.107137
Myers, W. D. & Schmidt, K. H. An update on droplet-model charge distributions. Nucl. Phys. A 410, 61–73 (1983).
doi: 10.1016/0375-9474(83)90401-3
Berdichevsky, D. & Tondeur, F. Nuclear core densities, isotope shifts, and the parametrization of the droplet model. Z. Phys. A 322, 141–147 (1985).
doi: 10.1007/BF01412027
Dobaczewski, J., Nazarewicz, W. & Reinhard, P. G. Error estimates of theoretical models: a guide. J. Phys. G 41, 074001 (2014).
doi: 10.1088/0954-3899/41/7/074001
Erler, J. & Reinhard, P. G. Error estimates for the Skyrme–Hartree–Fock model. J. Phys. G 42, 034026 (2015).
doi: 10.1088/0954-3899/42/3/034026
Cwiok, S., Heenen, P. H. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705–709 (2005).
pubmed: 15716943
doi: 10.1038/nature03336
Zumbro, J. et al. E2 and E4 deformations in
doi: 10.1016/0370-2693(86)91285-2
Reinhard, P. G., Bender, M., Nazarewicz, W. & Vertse, T. From finite nuclei to the nuclear liquid drop: leptodermous expansion based on self-consistent mean-field theory. Phys. Rev. C 73, 014309 (2006).
doi: 10.1103/PhysRevC.73.014309
Ferrer, R. et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 8, 14520 (2017).
pubmed: 28224987
pmcid: 5322538
doi: 10.1038/ncomms14520
Wang, M., Huang, W., Kondev, F., Audi, G. & Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 45, 030003 (2021).
doi: 10.1088/1674-1137/abddaf
Murböck, T. et al. Filament studies for laser spectroscopy on lawrencium. Hyperfine Interact. 241, 35 (2020).
doi: 10.1007/s10751-019-1689-1
Weber, F. et al. Nuclear moments and isotope shifts of the actinide isotopes
doi: 10.1103/PhysRevC.107.034313
Weber, F. et al. Probing the atomic structure of californium by resonance ionization spectroscopy. Atoms 10, 51 (2022).
doi: 10.3390/atoms10020051
Sonnenschein, V., Moore, I. D., Khan, H., Pohjalainen, I. & Reponen, M. Characterization of a dual-etalon Ti:sapphire laser via resonance ionization spectroscopy of stable copper isotopes. Hyperfine Interact. 227, 113–123 (2014).
doi: 10.1007/s10751-013-1000-9
Sonnenschein, V., Ohashi, M., Tomita, H. & Iguchi, T. A direct diode pumped continuous-wave Ti:sapphire laser as seed of a pulsed amplifier for high-resolution resonance ionization spectroscopy. Nucl. Instrum. Methods B 463, 512–514 (2020).
doi: 10.1016/j.nimb.2019.03.017
Sonnenschein, V. et al. Characterization of a pulsed injection-locked Ti:sapphire laser and its application to high resolution resonance ionization spectroscopy of copper. Laser Phys. 27, 085701 (2017).
doi: 10.1088/1555-6611/aa7834
Verlinde, M. et al. On the performance of wavelength meters: Part 1—consequences for medium-to-high-resolution laser spectroscopy. Appl. Phys. B 126, 1–14 (2020).
doi: 10.1007/s00340-020-07425-4
Khuyagbaatar, J. et al. α decay of
doi: 10.1103/PhysRevC.102.044312
Piot, J. et al. In-beam spectroscopy with intense ion beams: evidence for a rotational structure in
doi: 10.1103/PhysRevC.85.041301
Oganessian, Y. T. et al. Measurements of cross sections for the fusion-evaporation reactions
doi: 10.1103/PhysRevC.64.054606
Eskola, K., Eskola, P., Nurmia, M. & Ghiorso, A. Studies of lawrencium isotopes with mass numbers 255 through 260. Phys. Rev. C 4, 632–642 (1971).
doi: 10.1103/PhysRevC.4.632
Antalic, S. et al. Decay studies of neutron-deficient lawrencium isotopes. Eur. Phys. J. A 38, 219–226 (2008).
doi: 10.1140/epja/i2008-10665-7
Roberto, J. et al. Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99–116 (2015).
doi: 10.1016/j.nuclphysa.2015.06.009
Robinson, S. M. et al. Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochim. Acta 108, 737–746 (2020).
doi: 10.1515/ract-2020-0008
Eichler, B. et al. An atomic beam source for actinide elements: concept and realization. Radiochim. Acta 79, 221–234 (1997).
doi: 10.1524/ract.1997.79.4.221
Heßberger, F. et al. Alpha–gamma decay studies of
doi: 10.1140/epja/i2003-10238-4
Asaro, F., Bjørnholm, S. & Perlman, I. Decay scheme of Fm
doi: 10.1103/PhysRev.133.B291
Ahmad, I. & Horwitz, E. P. Alpha decay of [Formula: see text]Fm. Nucl. Phys. A 373, 434–444 (1982).
doi: 10.1016/0375-9474(82)90543-7
Gins, W. et al. Analysis of counting data: development of the SATLAS Python package. Comput. Phys. Commun. 222, 286–294 (2018).
doi: 10.1016/j.cpc.2017.09.012
Gins, W., van den Borne, B., de Groote, R. & Neyens, G. SATLAS2: an update to the package for analysis of counting data. Comput. Phys. Commun. 297, 109053 (2024).
doi: 10.1016/j.cpc.2023.109053
Heßberger, F. et al. Alpha–gamma decay studies of
doi: 10.1140/epja/i2006-10083-y
Ajayakumar, A. et al. In-gas-jet laser spectroscopy with S
doi: 10.1016/j.nimb.2023.03.020
Granados, C. et al. In-gas laser ionization and spectroscopy of actinium isotopes near the N = 126 closed shell. Phys. Rev. C 96, 054331 (2017).
Heilig, K. & Steudel, A. Changes in mean-square nuclear charge radii from optical isotope shifts. Atom. Data Nucl. Data 14, 613–638 (1974).
doi: 10.1016/S0092-640X(74)80006-9
Bender, M., Heenen, P. H. & Reinhard, P. G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).
doi: 10.1103/RevModPhys.75.121
Schunck, N. (ed.) Energy Density Functional Methods for Atomic Nuclei 2053–2563 (IOP Publishing, 2019); https://doi.org/10.1088/2053-2563/aae0ed .
Goriely, S., Hilaire, S., Girod, M. & Péru, S. First Gogny–Hartree–Fock–Bogoliubov nuclear mass model. Phys. Rev. Lett. 102, 242501 (2009).
pubmed: 19659002
doi: 10.1103/PhysRevLett.102.242501
Ryssens, W., Scamps, G., Goriely, S. & Bender, M. Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: II. Time-reversal symmetry breaking. Eur. Phys. J. A 58, 246 (2022).
doi: 10.1140/epja/s10050-022-00894-5
Klüpfel, P., Reinhard, P. G., Bürvenich, T. J. & Maruhn, J. A. Variations on a theme by Skyrme: a systematic study of adjustments of model parameters. Phys. Rev. C 79, 034310 (2009).
doi: 10.1103/PhysRevC.79.034310
Jodon, R. Ajustements de Fonctionnelles de Skyrme Généralisées. PhD thesis, Univ. Claude Bernard - Lyon 1 (2014); https://tel.archives-ouvertes.fr/tel-01158085 .
Sadoudi, J., Duguet, T., Meyer, J. & Bender, M. Skyrme functional from a three-body pseudopotential of second order in gradients: formalism for central terms. Phys. Rev. C 88, 064326 (2013).
doi: 10.1103/PhysRevC.88.064326
Fayans, S., Tolokonnikov, S., Trykov, E. & Zawischa, D. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676, 49–119 (2000).
doi: 10.1016/S0375-9474(00)00192-5
Reinhard, P. G. & Nazarewicz, W. Toward a global description of nuclear charge radii: exploring the fayans energy density functional. Phys. Rev. C 95, 064328 (2017).
doi: 10.1103/PhysRevC.95.064328
Bally, B. & Bender, M. Projection on particle number and angular momentum: example of triaxial Bogoliubov quasiparticle states. Phys. Rev. C 103, 024315 (2021).
doi: 10.1103/PhysRevC.103.024315
Bally, B., Giacalone, G. & Bender, M. Structure of
doi: 10.1140/epja/s10050-022-00833-4
Bally, B., Giacalone, G. & Bender, M. The shape of gold. Eur. Phys. J. A 59, 58 (2023).
Perez-Martin, S. & Robledo, L. M. Microscopic justification of the equal filling approximation. Phys. Rev. C 78, 014,304 (2008).
doi: 10.1103/PhysRevC.78.014304
Péru, S., Hilaire, S., Goriely, S. & Martini, M. Description of magnetic moments within the Gogny Hartree–Fock–Bogolyubov framework: application to Hg isotopes. Phys. Rev. C 104, 024328 (2021).
doi: 10.1103/PhysRevC.104.024328
Reinhard, P. G. & Nazarewicz, W. Nuclear charge densities in spherical and deformed nuclei: toward precise calculations of charge radii. Phys. Rev. C 103, 054310 (2021).
doi: 10.1103/PhysRevC.103.054310
Reinhard, P. G. & Nazarewicz, W. Nuclear charge and neutron radii and nuclear matter: trend analysis in Skyrme density-functional-theory approach. Phys. Rev. C 93, 051303 (2016).
doi: 10.1103/PhysRevC.93.051303
Rosen, M., Raphael, R. & Überall, H. Generalized Helm model for transverse electroexcitation of nuclear levels. Phys. Rev. 163, 927–934 (1967).
doi: 10.1103/PhysRev.163.927
Warbinek, J. & Fermium Collaboration. Dataset: Laser spectroscopy of fermium isotopes probing trends in nuclear charge radii. Zenodo https://doi.org/10.5281/zenodo.13342174 (2024).
Angeli, I. & Marinova, K. Table of experimental nuclear ground state charge radii: an update. Atom. Data Nucl. Data 99, 69–95 (2013).
doi: 10.1016/j.adt.2011.12.006