Real-time measurement of metals in submicron aerosols with particle-into-liquid sampler combined with micro-discharge optical emission spectroscopy.

Micro-plasma emission spectroscopy Particle-into-liquid sampler Sensitive on site monitoring Trace metals in air

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 16 05 2024
accepted: 22 10 2024
medline: 31 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

The paper presents a novel technique for quantifying trace metals in aerosol samples in real time. Airborne metals were continuously collected for one week near the Baltic Sea in Finland using a particle-into-liquid sampler (PILS). The collected liquid samples were analyzed for metals using micro-discharge optical emission spectroscopy (µDOES). The micro-discharge analyzer is designed to perform real-time, on-site measurements of metal concentrations in aqueous solutions. Currently, µDOES can provide online measurements of 30 metals, with typical detection limits from 0.01 µg/m

Identifiants

pubmed: 39476298
doi: 10.1007/s10661-024-13298-3
pii: 10.1007/s10661-024-13298-3
doi:

Substances chimiques

Aerosols 0
Metals 0
Air Pollutants 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1128

Informations de copyright

© 2024. The Author(s).

Références

Bhowmik, H. S., Shukla, A., Lalchandani, V., Dave, J., Rastogi, N., Kumar, M., Singh, V., & Tripathi, S. N. (2022). Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and water-soluble inorganic ions (NO 3−, SO 4 2−, NH 4+, and Cl−) in PM 2.5 over a heavily polluted megacity, Delhi. Atmospheric Measurement Techniques, 15(9), 2667–2684. https://doi.org/10.5194/amt-15-2667-2022
doi: 10.5194/amt-15-2667-2022
Blomberg von der Geest, K., Hyvönen, J., & Laurila, T. (2012). Real-time determination of metal concentrations in liquid flows using microplasma emission spectroscopy. Paper presented at the Photonics Global Conference (PGC). pp. 1–5. https://doi.org/10.1109/PGC.2012.6458046
Brewer, G. (1975). Minor elements in seawater. Chemical oceanography, 1, 415–496.
Cheng, I., Al Mamun, A., & Zhang, L. (2021). A synthesis review on atmospheric wet deposition of particulate elements: Scavenging ratios, solubility, and flux measurements. Environmental Reviews, 29(3), 340–353. https://doi.org/10.1139/er-2020-0118
doi: 10.1139/er-2020-0118
Chesselet, R., Morelli, J., & Buat-Ménard, P. (1972). Variations in ionic ratios between reference sea water and marine aerosols. Journal of Geophysical Research, 77, 5116–5131. https://doi.org/10.1029/JC077I027P05116
doi: 10.1029/JC077I027P05116
Das, S., Blomberg von der Geest, K., Mäkinen, A., Roos, A., Ikonen, E., & Laurila, T. (2023). Sensitive detection of metal concentrations in aqueous solution using real-time micro-plasma emission spectroscopy. Analytical letters, 57(8), 1–12. https://doi.org/10.1080/00032719.2023.2294358
doi: 10.1080/00032719.2023.2294358
Garrett, R. G. (2000). Natural sources of metals to the environment. Human and Ecological Risk Assessment, 6(6), 945–963. https://doi.org/10.1080/10807030091124383
doi: 10.1080/10807030091124383
Geiger, A., & Cooper, J. (2010). Overview of airborne metals regulations, exposure limits, health effects, and contemporary research (pp. 1–56). Environmental Protection Agency.
He, L., Wang, S., Liu, M., Chen, Z., Xu, J., & Dong, Y. (2023). Transport and transformation of atmospheric metals in ecosystems: A review. Journal of Hazardous Materials Advances, 9, 100218.
doi: 10.1016/j.hazadv.2022.100218
Heikkilä, P., Rostedt, A., Toivonen, J., & Keskinen, J. (2022). Elemental analysis of single ambient aerosol particles using laser-induced breakdown spectroscopy. Scientific Reports, 12(1), 14657. https://doi.org/10.1038/s41598-022-18349-8
doi: 10.1038/s41598-022-18349-8
Ioannidou, E., Papagiannis, S., Manousakas, M. I., Betsou, C., Eleftheriadis, K., Paatero, J., Papadopoulou, L., & Ioannidou, A. (2023). Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period. Atmosphere, 14(9), 1430. https://doi.org/10.3390/atmos14091430
doi: 10.3390/atmos14091430
Khan, Z. H., Ullah, M. H., Rahman, B., Talukder, A. I., Wahadoszamen, M., Abedin, K., & Haider, A. F. M. Y. (2022). Laser-induced breakdown spectroscopy (LIBS) for trace element detection: A review. Journal of Spectroscopy, 2022, 1–25. https://doi.org/10.1155/2022/3887038
doi: 10.1155/2022/3887038
Lee, R. E., Jr., & Von Lehmden, D. J. (1973). Trace metal pollution in the environment. Journal of the Air Pollution Control Association, 23(10), 853–857. https://doi.org/10.1080/00022470.1973.10469854
doi: 10.1080/00022470.1973.10469854
Orsini, D. A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., & Weber, R. J. (2003). Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment, 37(9–10), 1243–1259. https://doi.org/10.1016/S1352-2310(02)01015-4
doi: 10.1016/S1352-2310(02)01015-4
Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A., & Chowdhuri, D. K. (2021). Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262, 128350. https://doi.org/10.1016/j.chemosphere.2020.128350
doi: 10.1016/j.chemosphere.2020.128350
Popescu, F., & Ionel, I. (2010). Anthropogenic air pollution sources. Kumar, A. (Ed.) Air quality, 1–22. InTechOpen. https://doi.org/10.5772/9751
Pulles, T., van der Gon, H. D., Appelman, W., & Verheul, M. (2012). Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmospheric Environment, 61, 641–651. https://doi.org/10.1016/j.atmosenv.2012.07.022
doi: 10.1016/j.atmosenv.2012.07.022
Ralchenko, Y. (2005). NIST atomic spectra database. Memorie della Società Astronomica Italiana Supplement, 8, 96.
Santos, F., & Galceran, M. (2002). The application of gas chromatography to environmental analysis. TrAC Trends in Analytical Chemistry, 21(9–10), 672–685. https://doi.org/10.1016/S0165-9936(02)00813-0
doi: 10.1016/S0165-9936(02)00813-0
Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 21–25. https://doi.org/10.4103/2229-5186.79345
doi: 10.4103/2229-5186.79345
Soo, J. C., Monaghan, K., Lee, T., Kashon, M., & Harper, M. (2016). Air sampling filtration media: Collection efficiency for respirable size-selective sampling. Aerosol Science and Technology, 50(1), 76–87. https://doi.org/10.1080/02786826.2015.1128525
doi: 10.1080/02786826.2015.1128525
Sorooshian, A., Brechtel, F. J., Ma, Y., Weber, R. J., Corless, A., Flagan, R. C., & Seinfeld, J. H. (2006). Modeling and characterization of a particle-into-liquid sampler (PILS). Aerosol Science and Technology, 40(6), 396–409. https://doi.org/10.1080/02786820600632282
doi: 10.1080/02786820600632282
Steiner, D., Malachová, A., Sulyok, M., & Krska, R. (2021). Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Analytical and Bioanalytical Chemistry, 413, 25–34. https://doi.org/10.1007/s00216-020-03015-7
doi: 10.1007/s00216-020-03015-7
Toscano, G., Gambaro, A., Capodaglio, G., Cairns, W. R., & Cescon, P. (2009). Assessment of a procedure to determine trace and major elements in atmospheric aerosol. Journal of Environmental Monitoring, 11(1), 193–199. https://doi.org/10.1039/B804618B
doi: 10.1039/B804618B
Vaalgamaa, S., & Conley, D. J. (2008). Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 76(1), 45–56. https://doi.org/10.1016/j.ecss.2007.06.007
doi: 10.1016/j.ecss.2007.06.007
Vithanage, M., Bandara, P. C., Novo, L. A., Kumar, A., Ambade, B., Naveendrakumar, G., Ranagalage, M., & Magana-Arachchi, D. N. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 303, 135051. https://doi.org/10.1016/j.chemosphere.2022.135051
doi: 10.1016/j.chemosphere.2022.135051
Watson, T. B. (2016). Particle-into-Liquid Sampler (PILS) instrument handbook. United States. https://doi.org/10.2172/1251405
Weber, R., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P., & Brechtel, F. (2001). A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Science & Technology, 35(3), 718–727. https://doi.org/10.1080/02786820152546761
doi: 10.1080/02786820152546761
Wesely, M., & Hicks, B. (2000). A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12–14), 2261–2282. https://doi.org/10.1016/S1352-2310(99)00467-7
doi: 10.1016/S1352-2310(99)00467-7

Auteurs

Sudatta Das (S)

Metrology Research Institute, Aalto University, Maarintie 8, 02150, Espoo, Finland. sudatta.das@aalto.fi.

Kimmo Teinilä (K)

Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland.

Hilkka Timonen (H)

Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland.

Erkki Ikonen (E)

Metrology Research Institute, Aalto University, Maarintie 8, 02150, Espoo, Finland.
VTT MIKES, VTT Technical Research Centre of Finland Ltd, Tekniikantie 1, 02150, Espoo, Finland.

Toni Laurila (T)

Customer Application Center, Sensmet Ltd, Otakaari 7,02150Espoo, Espoo, Finland.

Articles similaires

Aerosols Humans Decontamination Air Microbiology Masks

Hemiarthroplasty in young patients.

Hazimah Mahmud, Dong Wang, Andra Topan-Rat et al.
1.00
Humans Male Hemiarthroplasty Middle Aged Aged
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH