Real-time measurement of metals in submicron aerosols with particle-into-liquid sampler combined with micro-discharge optical emission spectroscopy.
Micro-plasma emission spectroscopy
Particle-into-liquid sampler
Sensitive on site monitoring
Trace metals in air
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
16
05
2024
accepted:
22
10
2024
medline:
31
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
The paper presents a novel technique for quantifying trace metals in aerosol samples in real time. Airborne metals were continuously collected for one week near the Baltic Sea in Finland using a particle-into-liquid sampler (PILS). The collected liquid samples were analyzed for metals using micro-discharge optical emission spectroscopy (µDOES). The micro-discharge analyzer is designed to perform real-time, on-site measurements of metal concentrations in aqueous solutions. Currently, µDOES can provide online measurements of 30 metals, with typical detection limits from 0.01 µg/m
Identifiants
pubmed: 39476298
doi: 10.1007/s10661-024-13298-3
pii: 10.1007/s10661-024-13298-3
doi:
Substances chimiques
Aerosols
0
Metals
0
Air Pollutants
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1128Informations de copyright
© 2024. The Author(s).
Références
Bhowmik, H. S., Shukla, A., Lalchandani, V., Dave, J., Rastogi, N., Kumar, M., Singh, V., & Tripathi, S. N. (2022). Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and water-soluble inorganic ions (NO 3−, SO 4 2−, NH 4+, and Cl−) in PM 2.5 over a heavily polluted megacity, Delhi. Atmospheric Measurement Techniques, 15(9), 2667–2684. https://doi.org/10.5194/amt-15-2667-2022
doi: 10.5194/amt-15-2667-2022
Blomberg von der Geest, K., Hyvönen, J., & Laurila, T. (2012). Real-time determination of metal concentrations in liquid flows using microplasma emission spectroscopy. Paper presented at the Photonics Global Conference (PGC). pp. 1–5. https://doi.org/10.1109/PGC.2012.6458046
Brewer, G. (1975). Minor elements in seawater. Chemical oceanography, 1, 415–496.
Cheng, I., Al Mamun, A., & Zhang, L. (2021). A synthesis review on atmospheric wet deposition of particulate elements: Scavenging ratios, solubility, and flux measurements. Environmental Reviews, 29(3), 340–353. https://doi.org/10.1139/er-2020-0118
doi: 10.1139/er-2020-0118
Chesselet, R., Morelli, J., & Buat-Ménard, P. (1972). Variations in ionic ratios between reference sea water and marine aerosols. Journal of Geophysical Research, 77, 5116–5131. https://doi.org/10.1029/JC077I027P05116
doi: 10.1029/JC077I027P05116
Das, S., Blomberg von der Geest, K., Mäkinen, A., Roos, A., Ikonen, E., & Laurila, T. (2023). Sensitive detection of metal concentrations in aqueous solution using real-time micro-plasma emission spectroscopy. Analytical letters, 57(8), 1–12. https://doi.org/10.1080/00032719.2023.2294358
doi: 10.1080/00032719.2023.2294358
Garrett, R. G. (2000). Natural sources of metals to the environment. Human and Ecological Risk Assessment, 6(6), 945–963. https://doi.org/10.1080/10807030091124383
doi: 10.1080/10807030091124383
Geiger, A., & Cooper, J. (2010). Overview of airborne metals regulations, exposure limits, health effects, and contemporary research (pp. 1–56). Environmental Protection Agency.
He, L., Wang, S., Liu, M., Chen, Z., Xu, J., & Dong, Y. (2023). Transport and transformation of atmospheric metals in ecosystems: A review. Journal of Hazardous Materials Advances, 9, 100218.
doi: 10.1016/j.hazadv.2022.100218
Heikkilä, P., Rostedt, A., Toivonen, J., & Keskinen, J. (2022). Elemental analysis of single ambient aerosol particles using laser-induced breakdown spectroscopy. Scientific Reports, 12(1), 14657. https://doi.org/10.1038/s41598-022-18349-8
doi: 10.1038/s41598-022-18349-8
Ioannidou, E., Papagiannis, S., Manousakas, M. I., Betsou, C., Eleftheriadis, K., Paatero, J., Papadopoulou, L., & Ioannidou, A. (2023). Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period. Atmosphere, 14(9), 1430. https://doi.org/10.3390/atmos14091430
doi: 10.3390/atmos14091430
Khan, Z. H., Ullah, M. H., Rahman, B., Talukder, A. I., Wahadoszamen, M., Abedin, K., & Haider, A. F. M. Y. (2022). Laser-induced breakdown spectroscopy (LIBS) for trace element detection: A review. Journal of Spectroscopy, 2022, 1–25. https://doi.org/10.1155/2022/3887038
doi: 10.1155/2022/3887038
Lee, R. E., Jr., & Von Lehmden, D. J. (1973). Trace metal pollution in the environment. Journal of the Air Pollution Control Association, 23(10), 853–857. https://doi.org/10.1080/00022470.1973.10469854
doi: 10.1080/00022470.1973.10469854
Orsini, D. A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., & Weber, R. J. (2003). Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment, 37(9–10), 1243–1259. https://doi.org/10.1016/S1352-2310(02)01015-4
doi: 10.1016/S1352-2310(02)01015-4
Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A., & Chowdhuri, D. K. (2021). Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262, 128350. https://doi.org/10.1016/j.chemosphere.2020.128350
doi: 10.1016/j.chemosphere.2020.128350
Popescu, F., & Ionel, I. (2010). Anthropogenic air pollution sources. Kumar, A. (Ed.) Air quality, 1–22. InTechOpen. https://doi.org/10.5772/9751
Pulles, T., van der Gon, H. D., Appelman, W., & Verheul, M. (2012). Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmospheric Environment, 61, 641–651. https://doi.org/10.1016/j.atmosenv.2012.07.022
doi: 10.1016/j.atmosenv.2012.07.022
Ralchenko, Y. (2005). NIST atomic spectra database. Memorie della Società Astronomica Italiana Supplement, 8, 96.
Santos, F., & Galceran, M. (2002). The application of gas chromatography to environmental analysis. TrAC Trends in Analytical Chemistry, 21(9–10), 672–685. https://doi.org/10.1016/S0165-9936(02)00813-0
doi: 10.1016/S0165-9936(02)00813-0
Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 21–25. https://doi.org/10.4103/2229-5186.79345
doi: 10.4103/2229-5186.79345
Soo, J. C., Monaghan, K., Lee, T., Kashon, M., & Harper, M. (2016). Air sampling filtration media: Collection efficiency for respirable size-selective sampling. Aerosol Science and Technology, 50(1), 76–87. https://doi.org/10.1080/02786826.2015.1128525
doi: 10.1080/02786826.2015.1128525
Sorooshian, A., Brechtel, F. J., Ma, Y., Weber, R. J., Corless, A., Flagan, R. C., & Seinfeld, J. H. (2006). Modeling and characterization of a particle-into-liquid sampler (PILS). Aerosol Science and Technology, 40(6), 396–409. https://doi.org/10.1080/02786820600632282
doi: 10.1080/02786820600632282
Steiner, D., Malachová, A., Sulyok, M., & Krska, R. (2021). Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Analytical and Bioanalytical Chemistry, 413, 25–34. https://doi.org/10.1007/s00216-020-03015-7
doi: 10.1007/s00216-020-03015-7
Toscano, G., Gambaro, A., Capodaglio, G., Cairns, W. R., & Cescon, P. (2009). Assessment of a procedure to determine trace and major elements in atmospheric aerosol. Journal of Environmental Monitoring, 11(1), 193–199. https://doi.org/10.1039/B804618B
doi: 10.1039/B804618B
Vaalgamaa, S., & Conley, D. J. (2008). Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 76(1), 45–56. https://doi.org/10.1016/j.ecss.2007.06.007
doi: 10.1016/j.ecss.2007.06.007
Vithanage, M., Bandara, P. C., Novo, L. A., Kumar, A., Ambade, B., Naveendrakumar, G., Ranagalage, M., & Magana-Arachchi, D. N. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 303, 135051. https://doi.org/10.1016/j.chemosphere.2022.135051
doi: 10.1016/j.chemosphere.2022.135051
Watson, T. B. (2016). Particle-into-Liquid Sampler (PILS) instrument handbook. United States. https://doi.org/10.2172/1251405
Weber, R., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P., & Brechtel, F. (2001). A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Science & Technology, 35(3), 718–727. https://doi.org/10.1080/02786820152546761
doi: 10.1080/02786820152546761
Wesely, M., & Hicks, B. (2000). A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12–14), 2261–2282. https://doi.org/10.1016/S1352-2310(99)00467-7
doi: 10.1016/S1352-2310(99)00467-7