Thermal fluctuation and conformational effects on NMR parameters in β-O-4 lignin dimers from QM/MM and machine-learning approaches.


Journal

Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Titre abrégé: Phys Chem Chem Phys
Pays: England
ID NLM: 100888160

Informations de publication

Date de publication:
13 Apr 2022
Historique:
pubmed: 31 3 2022
medline: 16 4 2022
entrez: 30 3 2022
Statut: epublish

Résumé

Advanced solid-state and liquid-state nuclear magnetic resonance (NMR) approaches have enabled high throughput information about functional groups and types of bonding in a variety of lignin fragments from degradation processes and laboratory synthesis. The use of quantum chemical (QM) methods may provide detailed insight into the relationships between NMR parameters and specific lignin conformations and their dynamics, whereas a rapid prediction of NMR properties could be achieved by combining QM with machine-learning (ML) approaches. In this study, we present the effect of conformations of β-O-4 linked lignin guaiacyl dimers on

Identifiants

pubmed: 35352736
doi: 10.1039/d2cp00361a
doi:

Substances chimiques

Water 059QF0KO0R
Lignin 9005-53-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8820-8831

Auteurs

Sonia Milena Aguilera-Segura (SM)

ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France. tzonka.mineva@enscm.fr.

Dominik Dragún (D)

FIIT STU in Bratislava, Ilkovičova 2, 842 16 Bratislava, Slovakia.

Robin Gaumard (R)

ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France. tzonka.mineva@enscm.fr.

Francesco Di Renzo (F)

ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France. tzonka.mineva@enscm.fr.

Irina Malkin Ondík (IM)

FIIT STU in Bratislava, Ilkovičova 2, 842 16 Bratislava, Slovakia.
MicroStep-MIS spol. s.r.o. Čavojského 1, 84104 Bratislava, Slovakia.

Tzonka Mineva (T)

ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France. tzonka.mineva@enscm.fr.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis

Classifications MeSH