USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
31 03 2022
Historique:
received: 29 07 2021
accepted: 15 03 2022
entrez: 1 4 2022
pubmed: 2 4 2022
medline: 5 4 2022
Statut: epublish

Résumé

Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15-25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8

Identifiants

pubmed: 35361799
doi: 10.1038/s41467-022-29401-6
pii: 10.1038/s41467-022-29401-6
pmc: PMC8971425
doi:

Substances chimiques

Endosomal Sorting Complexes Required for Transport 0
Programmed Cell Death 1 Receptor 0
Endopeptidases EC 3.4.-
USP8 protein, human EC 3.4.19.12
Ubiquitin Thiolesterase EC 3.4.19.12
Usp8 protein, mouse EC 3.4.19.12

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1700

Subventions

Organisme : NCI NIH HHS
ID : P50 CA101942
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA251165
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).
pubmed: 29567705 pmcid: 7391259 doi: 10.1126/science.aar4060
Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).
pubmed: 29634946 pmcid: 5896787 doi: 10.1016/j.ccell.2018.03.005
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).
pubmed: 28187290 pmcid: 5391692 doi: 10.1016/j.cell.2017.01.017
Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).
pubmed: 31570880 doi: 10.1038/s41577-019-0218-4
Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).
pubmed: 31940268 doi: 10.1016/j.immuni.2019.12.011
Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & Lopez-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. 10, eaat7807 (2018).
pubmed: 30232229 doi: 10.1126/scitranslmed.aat7807
Zhang, J., Dang, F., Ren, J. & Wei, W. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochemical Sci. 43, 1014–1032 (2018).
doi: 10.1016/j.tibs.2018.09.004
Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).
pubmed: 29562194 pmcid: 7116507 doi: 10.1016/j.immuni.2018.03.014
Gao, Y. et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat. Cell Biol. 22, 1064–1075 (2020).
pubmed: 32839551 pmcid: 7484128 doi: 10.1038/s41556-020-0562-4
Petroni, G., Buque, A., Zitvogel, L., Kroemer, G. & Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 39, 310–345 (2020).
pubmed: 33338426 doi: 10.1016/j.ccell.2020.11.009
Martinez-Forero, I., Rouzaut, A., Palazon, A., Dubrot, J. & Melero, I. Lysine 63 polyubiquitination in immunotherapy and in cancer-promoting inflammation. Clin. Cancer Res. 15, 6751–6757 (2009).
pubmed: 19887490 doi: 10.1158/1078-0432.CCR-09-1225
Komander, D. & Rape, M. The ubiquitin code. Annu Rev. Biochem. 81, 203–229 (2012).
pubmed: 22524316 doi: 10.1146/annurev-biochem-060310-170328
Grabbe, C., Husnjak, K. & Dikic, I. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12, 295–307 (2011).
pubmed: 21448225 pmcid: 3654194 doi: 10.1038/nrm3099
Akutsu, M., Dikic, I. & Bremm, A. Ubiquitin chain diversity at a glance. J. Cell Sci. 129, 875–880 (2016).
pubmed: 26906419
Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9, 679–690 (2008).
pubmed: 18698327 pmcid: 2606094 doi: 10.1038/nrm2468
Chen, Z. J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246, 95–106 (2012).
pubmed: 22435549 pmcid: 3549672 doi: 10.1111/j.1600-065X.2012.01108.x
Zhang, J. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).
pubmed: 29160310 doi: 10.1038/nature25015
Li, C. W. et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 7, 12632 (2016).
pubmed: 27572267 pmcid: 5013604 doi: 10.1038/ncomms12632
Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).
pubmed: 28813417 pmcid: 5706633 doi: 10.1038/nature23643
Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).
pubmed: 28813410 pmcid: 6333292 doi: 10.1038/nature23669
Harrigan, J. A., Jacq, X., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17, 57–78 (2018).
pubmed: 28959952 doi: 10.1038/nrd.2017.152
Clague, M. J., Urbe, S. & Komander, D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352 (2019).
pubmed: 30733604 doi: 10.1038/s41580-019-0099-1
Dufner, A. & Knobeloch, K. P. Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochemical Soc. Trans. 47, 1867–1879 (2019).
doi: 10.1042/BST20190527
Crespo-Yanez, X. et al. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet. 14, e1007456 (2018).
pubmed: 29933386 pmcid: 6033466 doi: 10.1371/journal.pgen.1007456
Byun, S. et al. USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin. Cancer Res 19, 3894–3904 (2013).
pubmed: 23748694 pmcid: 3891300 doi: 10.1158/1078-0432.CCR-12-3696
Shin, S. et al. Deubiquitylation and stabilization of Notch1 intracellular domain by ubiquitin-specific protease 8 enhance tumorigenesis in breast cancer. Cell Death Differ. 27, 1341–1354 (2020).
pubmed: 31527799 doi: 10.1038/s41418-019-0419-1
Jeong, M. et al. USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene 36, 458–470 (2017).
pubmed: 27321185 doi: 10.1038/onc.2016.215
Reincke, M. et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 47, 31–38 (2015).
pubmed: 25485838 doi: 10.1038/ng.3166
Ma, Z. Y. et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 25, 306–317 (2015).
pubmed: 25675982 pmcid: 4349249 doi: 10.1038/cr.2015.20
Dufner, A. et al. The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nat. Immunol. 16, 950–960 (2015).
pubmed: 26214742 doi: 10.1038/ni.3230
Berlin, I., Schwartz, H. & Nash, P. D. Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8.STAM complex. J. Biol. Chem. 285, 34909–34921 (2010).
pubmed: 20736164 pmcid: 2966105 doi: 10.1074/jbc.M109.016287
Niendorf, S. et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol. Cell. Biol. 27, 5029–5039 (2007).
pubmed: 17452457 pmcid: 1951504 doi: 10.1128/MCB.01566-06
Durcan, T. M. et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473–2491 (2014).
pubmed: 25216678 pmcid: 4283406 doi: 10.15252/embj.201489729
Gu, H. et al. USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nat. Commun. 10, 1465 (2019).
pubmed: 30931944 pmcid: 6443784 doi: 10.1038/s41467-019-09430-4
Ritorto, M. S. et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 5, 4763 (2014).
pubmed: 25159004 doi: 10.1038/ncomms5763
Berlin, I., Higginbotham, K. M., Dise, R. S., Sierra, M. I. & Nash, P. D. The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome. J. Biol. Chem. 285, 37895–37908 (2010).
pubmed: 20876529 pmcid: 2988392 doi: 10.1074/jbc.M110.129411
Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).
pubmed: 27866850 pmcid: 5171205 doi: 10.1016/j.ccell.2016.10.010
Funakoshi-Tago, M. et al. TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell. Signal. 20, 1679–1686 (2008).
pubmed: 18603409 doi: 10.1016/j.cellsig.2008.05.013
Deng, L. et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).
pubmed: 11057907 doi: 10.1016/S0092-8674(00)00126-4
Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).
pubmed: 12140561 doi: 10.1038/nature00888
Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).
pubmed: 22632973 pmcid: 3586339 doi: 10.1016/j.cell.2012.02.065
Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).
pubmed: 29217585 doi: 10.1126/science.aao4572
Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer cell 29, 285–296 (2016).
pubmed: 26977880 pmcid: 4794755 doi: 10.1016/j.ccell.2016.02.004
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).
pubmed: 30127393 pmcid: 6487502 doi: 10.1038/s41591-018-0136-1
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).
pubmed: 11460167 doi: 10.1038/35085597
Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J. Biol. Chem. 282, 4102–4112 (2007).
pubmed: 17135271 doi: 10.1074/jbc.M609503200
Moon, C. S. et al. FYN-TRAF3IP2 induces NF-kappaB signaling-driven peripheral T cell lymphoma. Nat. Cancer 2, 98–113 (2021).
pubmed: 33928261 pmcid: 8081346 doi: 10.1038/s43018-020-00161-w
Waelchli, R. et al. Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorg. Med. Chem. Lett. 16, 108–112 (2006).
pubmed: 16236504 doi: 10.1016/j.bmcl.2005.09.035
Walsh, M. C., Lee, J. & Choi, Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol. Rev. 266, 72–92 (2015).
pubmed: 26085208 pmcid: 4799835 doi: 10.1111/imr.12302
Wang, B. et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 545, 365–369 (2017).
pubmed: 28489822 pmcid: 5695540 doi: 10.1038/nature22344
Lee, Y. R. et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 364, eaau0159 (2019).
pubmed: 31097636 pmcid: 7081834 doi: 10.1126/science.aau0159
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877 doi: 10.1158/2159-8290.CD-12-0095
Czerninski, R., Amornphimoltham, P., Patel, V., Molinolo, A. A. & Gutkind, J. S. Targeting mammalian target of rapamycin by rapamycin prevents tumor progression in an oral-specific chemical carcinogenesis model. Cancer Prev. Res. 2, 27–36 (2009).
doi: 10.1158/1940-6207.CAPR-08-0147
Zhang, M. et al. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat. Commun. 11, 6119 (2020).
pubmed: 33257678 pmcid: 7704643 doi: 10.1038/s41467-020-19973-6
Tan, Y. S. & Lei, Y. L. Isolation of tumor-infiltrating lymphocytes by ficoll-paque density gradient centrifugation. Methods Mol. Biol. 1960, 93–99 (2019).
pubmed: 30798524 pmcid: 6533618 doi: 10.1007/978-1-4939-9167-9_8

Auteurs

Wenjun Xiong (W)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Xueliang Gao (X)

Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.

Tiantian Zhang (T)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Baishan Jiang (B)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
Center for Protein Degradation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.

Ming-Ming Hu (MM)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.

Xia Bu (X)

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.

Yang Gao (Y)

Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.

Lin-Zhou Zhang (LZ)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430071, Wuhan, China.

Bo-Lin Xiao (BL)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430071, Wuhan, China.

Chuan He (C)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Yishuang Sun (Y)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Haiou Li (H)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
Department of Dermatology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.

Jie Shi (J)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Xiangling Xiao (X)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Bolin Xiang (B)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Conghua Xie (C)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.

Gang Chen (G)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430071, Wuhan, China.

Haojian Zhang (H)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.

Wenyi Wei (W)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.

Gordon J Freeman (GJ)

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.

Hong-Bing Shu (HB)

Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.

Haizhen Wang (H)

Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA. wangha@musc.edu.

Jinfang Zhang (J)

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China. jinfang_zhang@whu.edu.cn.
Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China. jinfang_zhang@whu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH