USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy.
Animals
CD8-Positive T-Lymphocytes
Cell Line, Tumor
Endopeptidases
/ genetics
Endosomal Sorting Complexes Required for Transport
/ genetics
Humans
Immunotherapy
Mice
Neoplasms
/ drug therapy
Programmed Cell Death 1 Receptor
/ antagonists & inhibitors
Tumor Microenvironment
Ubiquitin Thiolesterase
/ antagonists & inhibitors
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
31 03 2022
31 03 2022
Historique:
received:
29
07
2021
accepted:
15
03
2022
entrez:
1
4
2022
pubmed:
2
4
2022
medline:
5
4
2022
Statut:
epublish
Résumé
Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15-25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8
Identifiants
pubmed: 35361799
doi: 10.1038/s41467-022-29401-6
pii: 10.1038/s41467-022-29401-6
pmc: PMC8971425
doi:
Substances chimiques
Endosomal Sorting Complexes Required for Transport
0
Programmed Cell Death 1 Receptor
0
Endopeptidases
EC 3.4.-
USP8 protein, human
EC 3.4.19.12
Ubiquitin Thiolesterase
EC 3.4.19.12
Usp8 protein, mouse
EC 3.4.19.12
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1700Subventions
Organisme : NCI NIH HHS
ID : P50 CA101942
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA251165
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).
pubmed: 29567705
pmcid: 7391259
doi: 10.1126/science.aar4060
Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).
pubmed: 29634946
pmcid: 5896787
doi: 10.1016/j.ccell.2018.03.005
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).
pubmed: 28187290
pmcid: 5391692
doi: 10.1016/j.cell.2017.01.017
Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).
pubmed: 31570880
doi: 10.1038/s41577-019-0218-4
Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).
pubmed: 31940268
doi: 10.1016/j.immuni.2019.12.011
Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & Lopez-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. 10, eaat7807 (2018).
pubmed: 30232229
doi: 10.1126/scitranslmed.aat7807
Zhang, J., Dang, F., Ren, J. & Wei, W. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochemical Sci. 43, 1014–1032 (2018).
doi: 10.1016/j.tibs.2018.09.004
Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).
pubmed: 29562194
pmcid: 7116507
doi: 10.1016/j.immuni.2018.03.014
Gao, Y. et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat. Cell Biol. 22, 1064–1075 (2020).
pubmed: 32839551
pmcid: 7484128
doi: 10.1038/s41556-020-0562-4
Petroni, G., Buque, A., Zitvogel, L., Kroemer, G. & Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 39, 310–345 (2020).
pubmed: 33338426
doi: 10.1016/j.ccell.2020.11.009
Martinez-Forero, I., Rouzaut, A., Palazon, A., Dubrot, J. & Melero, I. Lysine 63 polyubiquitination in immunotherapy and in cancer-promoting inflammation. Clin. Cancer Res. 15, 6751–6757 (2009).
pubmed: 19887490
doi: 10.1158/1078-0432.CCR-09-1225
Komander, D. & Rape, M. The ubiquitin code. Annu Rev. Biochem. 81, 203–229 (2012).
pubmed: 22524316
doi: 10.1146/annurev-biochem-060310-170328
Grabbe, C., Husnjak, K. & Dikic, I. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12, 295–307 (2011).
pubmed: 21448225
pmcid: 3654194
doi: 10.1038/nrm3099
Akutsu, M., Dikic, I. & Bremm, A. Ubiquitin chain diversity at a glance. J. Cell Sci. 129, 875–880 (2016).
pubmed: 26906419
Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9, 679–690 (2008).
pubmed: 18698327
pmcid: 2606094
doi: 10.1038/nrm2468
Chen, Z. J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246, 95–106 (2012).
pubmed: 22435549
pmcid: 3549672
doi: 10.1111/j.1600-065X.2012.01108.x
Zhang, J. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).
pubmed: 29160310
doi: 10.1038/nature25015
Li, C. W. et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 7, 12632 (2016).
pubmed: 27572267
pmcid: 5013604
doi: 10.1038/ncomms12632
Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).
pubmed: 28813417
pmcid: 5706633
doi: 10.1038/nature23643
Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).
pubmed: 28813410
pmcid: 6333292
doi: 10.1038/nature23669
Harrigan, J. A., Jacq, X., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17, 57–78 (2018).
pubmed: 28959952
doi: 10.1038/nrd.2017.152
Clague, M. J., Urbe, S. & Komander, D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352 (2019).
pubmed: 30733604
doi: 10.1038/s41580-019-0099-1
Dufner, A. & Knobeloch, K. P. Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochemical Soc. Trans. 47, 1867–1879 (2019).
doi: 10.1042/BST20190527
Crespo-Yanez, X. et al. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet. 14, e1007456 (2018).
pubmed: 29933386
pmcid: 6033466
doi: 10.1371/journal.pgen.1007456
Byun, S. et al. USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin. Cancer Res 19, 3894–3904 (2013).
pubmed: 23748694
pmcid: 3891300
doi: 10.1158/1078-0432.CCR-12-3696
Shin, S. et al. Deubiquitylation and stabilization of Notch1 intracellular domain by ubiquitin-specific protease 8 enhance tumorigenesis in breast cancer. Cell Death Differ. 27, 1341–1354 (2020).
pubmed: 31527799
doi: 10.1038/s41418-019-0419-1
Jeong, M. et al. USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene 36, 458–470 (2017).
pubmed: 27321185
doi: 10.1038/onc.2016.215
Reincke, M. et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 47, 31–38 (2015).
pubmed: 25485838
doi: 10.1038/ng.3166
Ma, Z. Y. et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 25, 306–317 (2015).
pubmed: 25675982
pmcid: 4349249
doi: 10.1038/cr.2015.20
Dufner, A. et al. The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nat. Immunol. 16, 950–960 (2015).
pubmed: 26214742
doi: 10.1038/ni.3230
Berlin, I., Schwartz, H. & Nash, P. D. Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8.STAM complex. J. Biol. Chem. 285, 34909–34921 (2010).
pubmed: 20736164
pmcid: 2966105
doi: 10.1074/jbc.M109.016287
Niendorf, S. et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol. Cell. Biol. 27, 5029–5039 (2007).
pubmed: 17452457
pmcid: 1951504
doi: 10.1128/MCB.01566-06
Durcan, T. M. et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473–2491 (2014).
pubmed: 25216678
pmcid: 4283406
doi: 10.15252/embj.201489729
Gu, H. et al. USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nat. Commun. 10, 1465 (2019).
pubmed: 30931944
pmcid: 6443784
doi: 10.1038/s41467-019-09430-4
Ritorto, M. S. et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 5, 4763 (2014).
pubmed: 25159004
doi: 10.1038/ncomms5763
Berlin, I., Higginbotham, K. M., Dise, R. S., Sierra, M. I. & Nash, P. D. The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome. J. Biol. Chem. 285, 37895–37908 (2010).
pubmed: 20876529
pmcid: 2988392
doi: 10.1074/jbc.M110.129411
Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).
pubmed: 27866850
pmcid: 5171205
doi: 10.1016/j.ccell.2016.10.010
Funakoshi-Tago, M. et al. TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell. Signal. 20, 1679–1686 (2008).
pubmed: 18603409
doi: 10.1016/j.cellsig.2008.05.013
Deng, L. et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).
pubmed: 11057907
doi: 10.1016/S0092-8674(00)00126-4
Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).
pubmed: 12140561
doi: 10.1038/nature00888
Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).
pubmed: 22632973
pmcid: 3586339
doi: 10.1016/j.cell.2012.02.065
Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).
pubmed: 29217585
doi: 10.1126/science.aao4572
Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer cell 29, 285–296 (2016).
pubmed: 26977880
pmcid: 4794755
doi: 10.1016/j.ccell.2016.02.004
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).
pubmed: 30127393
pmcid: 6487502
doi: 10.1038/s41591-018-0136-1
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).
pubmed: 11460167
doi: 10.1038/35085597
Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J. Biol. Chem. 282, 4102–4112 (2007).
pubmed: 17135271
doi: 10.1074/jbc.M609503200
Moon, C. S. et al. FYN-TRAF3IP2 induces NF-kappaB signaling-driven peripheral T cell lymphoma. Nat. Cancer 2, 98–113 (2021).
pubmed: 33928261
pmcid: 8081346
doi: 10.1038/s43018-020-00161-w
Waelchli, R. et al. Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorg. Med. Chem. Lett. 16, 108–112 (2006).
pubmed: 16236504
doi: 10.1016/j.bmcl.2005.09.035
Walsh, M. C., Lee, J. & Choi, Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol. Rev. 266, 72–92 (2015).
pubmed: 26085208
pmcid: 4799835
doi: 10.1111/imr.12302
Wang, B. et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 545, 365–369 (2017).
pubmed: 28489822
pmcid: 5695540
doi: 10.1038/nature22344
Lee, Y. R. et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 364, eaau0159 (2019).
pubmed: 31097636
pmcid: 7081834
doi: 10.1126/science.aau0159
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877
doi: 10.1158/2159-8290.CD-12-0095
Czerninski, R., Amornphimoltham, P., Patel, V., Molinolo, A. A. & Gutkind, J. S. Targeting mammalian target of rapamycin by rapamycin prevents tumor progression in an oral-specific chemical carcinogenesis model. Cancer Prev. Res. 2, 27–36 (2009).
doi: 10.1158/1940-6207.CAPR-08-0147
Zhang, M. et al. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat. Commun. 11, 6119 (2020).
pubmed: 33257678
pmcid: 7704643
doi: 10.1038/s41467-020-19973-6
Tan, Y. S. & Lei, Y. L. Isolation of tumor-infiltrating lymphocytes by ficoll-paque density gradient centrifugation. Methods Mol. Biol. 1960, 93–99 (2019).
pubmed: 30798524
pmcid: 6533618
doi: 10.1007/978-1-4939-9167-9_8