Decarboxylative Borylation and Cross-Coupling of (Hetero)aryl Acids Enabled by Copper Charge Transfer Catalysis.


Journal

Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056

Informations de publication

Date de publication:
13 04 2022
Historique:
pubmed: 5 4 2022
medline: 15 4 2022
entrez: 4 4 2022
Statut: ppublish

Résumé

We report a copper-catalyzed strategy for arylboronic ester synthesis that exploits photoinduced ligand-to-metal charge transfer (LMCT) to convert (hetero)aryl acids into aryl radicals amenable to ambient-temperature borylation. This near-UV process occurs under mild conditions, requires no prefunctionalization of the native acid, and operates broadly across diverse aryl, heteroaryl, and pharmaceutical substrates. We also report a one-pot procedure for decarboxylative cross-coupling that merges catalytic LMCT borylation and palladium-catalyzed Suzuki-Miyaura arylation, vinylation, or alkylation with organobromides to access a range of value-added products. The utility of these protocols is highlighted through the development of a heteroselective double-decarboxylative C(sp

Identifiants

pubmed: 35377627
doi: 10.1021/jacs.2c01630
pmc: PMC9676084
mid: NIHMS1850489
doi:

Substances chimiques

Pharmaceutical Preparations 0
Palladium 5TWQ1V240M
Copper 789U1901C5

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

6163-6172

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM134897
Pays : United States

Références

Organometallics. 2019 Jan 14;38(1):3-35
pubmed: 31741548
Angew Chem Int Ed Engl. 2021 Sep 20;60(39):21100-21115
pubmed: 33599363
J Am Chem Soc. 2010 Oct 13;132(40):14006-8
pubmed: 20831188
Angew Chem Int Ed Engl. 2021 Nov 8;60(46):24510-24518
pubmed: 34235828
J Org Chem. 2012 Oct 5;77(19):8678-88
pubmed: 22994557
Molecules. 2020 Jul 31;25(15):
pubmed: 32751973
Chem Soc Rev. 2014 Jan 7;43(1):412-43
pubmed: 24091429
Chem Commun (Camb). 2009 Dec 14;(46):7173-5
pubmed: 19921020
J Org Chem. 2021 Dec 3;86(23):17445-17452
pubmed: 34747599
Chem Rev. 2003 Aug;103(8):2829-44
pubmed: 12914482
Angew Chem Int Ed Engl. 2012 May 21;51(21):5062-85
pubmed: 22573393
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13197-202
pubmed: 18768813
Science. 2014 Jul 25;345(6195):437-40
pubmed: 24903563
Chemistry. 2000 Apr 3;6(7):1147-52
pubmed: 10785799
Nat Commun. 2015 Jun 29;6:7508
pubmed: 26118733
J Am Chem Soc. 2021 Feb 24;143(7):2729-2735
pubmed: 33576606
J Am Chem Soc. 2009 May 27;131(20):6961-3
pubmed: 19405470
Chem Rev. 2010 Feb 10;110(2):890-931
pubmed: 20028025
Science. 2018 Aug 17;361(6403):668-672
pubmed: 30049785
Org Lett. 2017 Aug 18;19(16):4291-4294
pubmed: 28753311
Chem Rev. 2021 Jan 13;121(1):412-484
pubmed: 33200917
J Am Chem Soc. 2021 Aug 25;143(33):12985-12991
pubmed: 34374534
J Am Chem Soc. 2018 May 23;140(20):6221-6225
pubmed: 29741375
Chem Rev. 2019 Dec 26;119(24):12491-12523
pubmed: 31756093
Chem Rev. 2020 Aug 12;120(15):7348-7398
pubmed: 32597639
Chem Commun (Camb). 2011 May 21;47(19):5455-7
pubmed: 21461411
J Am Chem Soc. 2017 Jun 7;139(22):7440-7443
pubmed: 28514176
ACS Cent Sci. 2017 Jun 28;3(6):647-653
pubmed: 28691077
J Am Chem Soc. 2002 Sep 25;124(38):11250-1
pubmed: 12236722
Tetrahedron. 2019 Feb 1;75(5):584-602
pubmed: 31564756
Angew Chem Int Ed Engl. 2021 Nov 2;60(45):24012-24017
pubmed: 34464007
J Org Chem. 2020 Apr 17;85(8):5362-5369
pubmed: 32174115
Org Biomol Chem. 2006 Jun 21;4(12):2337-47
pubmed: 16763676
Angew Chem Int Ed Engl. 2016 Dec 5;55(49):15319-15322
pubmed: 27862775
Angew Chem Int Ed Engl. 2019 Jul 29;58(31):10514-10520
pubmed: 31162874
Chem Sci. 2019 Sep 3;10(37):8503-8518
pubmed: 32015798
Chemistry. 2015 May 4;21(19):7082-98
pubmed: 25877472
Org Lett. 2010 Mar 5;12(5):1000-3
pubmed: 20187653
Nature. 2018 Nov;563(7729):100-104
pubmed: 30356210
iScience. 2020 Jul 24;23(7):101266
pubmed: 32593954
Acc Chem Res. 2008 Nov 18;41(11):1461-73
pubmed: 18620434
Chem Rev. 2003 Aug;103(8):2763-94
pubmed: 12914480
Chem Rev. 2021 Apr 14;121(7):3561-3597
pubmed: 33596057
J Am Chem Soc. 2021 Apr 14;143(14):5349-5354
pubmed: 33818084
Angew Chem Int Ed Engl. 2012 Jun 11;51(24):5945-9
pubmed: 22492664
Chem Soc Rev. 2011 Oct;40(10):5030-48
pubmed: 21792454
Org Lett. 2007 Jun 21;9(13):2441-4
pubmed: 17542594
ACS Catal. 2021 Jun 18;11(12):7442-7449
pubmed: 35669035
Org Lett. 2007 Apr 26;9(9):1781-3
pubmed: 17411063
Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16721-16726
pubmed: 30358030
iScience. 2019 Sep 27;19:749-759
pubmed: 31491721
Chem Commun (Camb). 2019 May 30;55(45):6445-6448
pubmed: 31099348
J Am Chem Soc. 2016 Oct 5;138(39):12719-12722
pubmed: 27653738
J Am Chem Soc. 2014 Apr 9;136(14):5257-60
pubmed: 24712922
J Am Chem Soc. 2019 Oct 30;141(43):17322-17330
pubmed: 31617708
Chemistry. 2016 Nov 14;22(47):16787-16790
pubmed: 27717095
Chemistry. 2009;15(15):3674-7
pubmed: 19248058
Chem Rev. 2022 Jan 26;122(2):2429-2486
pubmed: 34613698
Org Lett. 2010 Mar 5;12(5):992-5
pubmed: 20121254
Chem Rev. 2013 Jul 10;113(7):5322-63
pubmed: 23509883
Chemistry. 2010 Jun 18;16(23):6861-5
pubmed: 20449854
Angew Chem Int Ed Engl. 2009;48(29):5350-4
pubmed: 19533703
Org Lett. 2019 Jun 7;21(11):4259-4265
pubmed: 31090423
Org Lett. 2009 Dec 17;11(24):5710-3
pubmed: 19924891
J Am Chem Soc. 2006 Sep 6;128(35):11350-1
pubmed: 16939247
Chem Soc Rev. 2018 Oct 1;47(19):7477-7494
pubmed: 30206614
Science. 2006 Aug 4;313(5787):662-4
pubmed: 16888137
Chem Rev. 2022 Jan 26;122(2):1485-1542
pubmed: 34793128
Chemistry. 2014 Feb 3;20(6):1630-7
pubmed: 24435980
Chemistry. 2017 Jun 1;23(31):7382-7401
pubmed: 27859719
J Med Chem. 2016 May 26;59(10):4443-58
pubmed: 26571338
Angew Chem Int Ed Engl. 2015 Dec 21;54(52):15632-41
pubmed: 26509837
Acc Chem Res. 2014 Oct 21;47(10):3174-83
pubmed: 25262745
Chem Commun (Camb). 2011 Jan 14;47(2):677-9
pubmed: 21103597
Angew Chem Int Ed Engl. 2020 Dec 1;59(49):21875-21879
pubmed: 32840957
Org Lett. 2010 Nov 5;12(21):4745-7
pubmed: 20866102
Nat Chem. 2022 Jan;14(1):94-99
pubmed: 34987174

Auteurs

Nathan W Dow (NW)

Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States.

P Scott Pedersen (PS)

Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States.

Tiffany Q Chen (TQ)

Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States.

David C Blakemore (DC)

Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States.

Anne-Marie Dechert-Schmitt (AM)

Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States.

Thomas Knauber (T)

Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States.

David W C MacMillan (DWC)

Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States.

Articles similaires

Humans Pharmaceutical Preparations Drug Utilization Prescription Drugs
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Peroxynitrous Acid Animals Escherichia coli Immunotherapy Mice
Colorimetry Captopril Humans Alloys Limit of Detection

Classifications MeSH