Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat.
Journal
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
17
02
2022
accepted:
16
03
2022
pubmed:
6
4
2022
medline:
22
6
2022
entrez:
5
4
2022
Statut:
ppublish
Résumé
Introducing Agropyron cristatum chromosome 1P into common wheat can significantly reduce the plant height and leaf size, which can improve the plant architecture of common wheat. A new direction in crop breeding is the improvement of plant architecture for dense plantings to obtain higher yields. Wild relatives carry an abundant genetic variation that can increase the diversity of genes for crop genetic improvement. In this study, the A. cristatum 1P addition line, 1PS and 1PL telosomic addition lines were obtained by backcrossing the addition/substitution line II-3-1 (2n = 20'' W + 1P" + 2P") with the commercial recurrent parent cv. Jimai 22. Four continuous years of agronomic trait investigation in the genetic populations suggested that the introduction of A. cristatum chromosome 1P into wheat can significantly improve wheat plant architecture by reducing the plant height, leaf length and leaf width. A. cristatum chromosome arm 1PS reduced the plant height and leaf length of wheat, whereas introducing A. cristatum chromosome arm 1PL reduced the plant height, leaf length and leaf width. Altogether, our results demonstrated that A. cristatum chromosome 1P carries the dominant genes for small leaves and a dwarf habit for the enhancement of plant architecture in wheat. This study highlights wild relative donors as new gene resources for improving wheat plant architecture for dense planting.
Identifiants
pubmed: 35378599
doi: 10.1007/s00122-022-04086-z
pii: 10.1007/s00122-022-04086-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1951-1963Subventions
Organisme : National Natural Science Foundation of China
ID : 31971879
Organisme : Chinese Agriculture Research System
ID : CARS-03
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Aquino RC, Jennings PR (1966) Inheritance and significance of dwarfism in an indica rice variety. Crop Sci 6:551–554
doi: 10.2135/cropsci1966.0011183X000600060015x
Bayat H, Nemati H, Tehranifar A, Gazanchian A (2016) Screening different crested wheatgrass (Agropyron cristatum (L.) Gaertner.) accessions for drought stress tolerance. Arch Agron Soil Sci 62:769–780
doi: 10.1080/03650340.2015.1094182
Bazhenov MS, Divashuk MG, Amagai Y, Watanabe N, Karlov GI (2015) Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Mol Breeding 35:1–8
doi: 10.1007/s11032-015-0407-1
Byrne PF, Volk GM, Gardner C, Gore MA, Simon PW, Smith S (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Sci 58:451–468
doi: 10.2135/cropsci2017.05.0303
Cao W, Somers DJ, Fedak G (2009) A molecular marker closely linked to the region of Rht-D1c and Ms2 genes in common wheat (Triticum aestivum). Genome 52:95–99
pubmed: 19132076
doi: 10.1139/G08-097
Cao Y, Zhong Z, Wang H, Shen R (2022) Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol J 20:426–436
pubmed: 35075761
pmcid: 8882799
doi: 10.1111/pbi.13780
Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082
doi: 10.2135/cropsci2016.10.0885
Fan XL, Cui F, Zhao CH, Zhang W, Yang LJ, Zhao XQ, Han J, Su QN, Ji J, Zhao ZW, Tong YP, Li JM (2015) QTLs for flag leaf size and their influence on yield- related traits in wheat (Triticum aestivum L.). Mol Breeding 35:24
doi: 10.1007/s11032-015-0205-9
Flintham JE, Borner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agr Sci-Cambridge 128:11–25
doi: 10.1017/S0021859696003942
Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552
pubmed: 25994088
pmcid: 4440213
doi: 10.1038/srep10552
Han HM, Zhang YX, Liu WH, Hu ZM, Li LH (2015) Degenerate oligonucleotide primed-polymerase chain reaction-based chromosome painting of P genome chromosomes in Agropyron cristatum and Wheat-A. cristatum Addition Lines. Crop Sci 55:2798–2805
doi: 10.2135/cropsci2015.03.0183
Han H, Liu W, Lu Y, Zhang J, Yang X, Li X, Hu Z, Li L (2017) Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta 245:425–437
pubmed: 27832372
doi: 10.1007/s00425-016-2616-1
Han H, Bai L, Su J, Zhang J, Song L, Gao A, Yang X, Li X, Liu W, Li L (2014) Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE 9:e91066
pubmed: 24595330
pmcid: 3942500
doi: 10.1371/journal.pone.0091066
Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9
pubmed: 12493241
doi: 10.1016/S0168-9525(02)00009-4
Isidro J, Knox R, Clarke F, Singh A, DePauw R, Clarke J, Somers D (2012) Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta 236:1713–1723
pubmed: 22868576
doi: 10.1007/s00425-012-1728-5
Jia HY, Wan HS, Yang SH, Zhang ZZ, Kong ZX, Xue SL, Zhang LX, Ma ZQ (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor and Appl Genet 126:2123–2139
doi: 10.1007/s00122-013-2123-8
Jiang B, Liu T, Li H, Han H, Li L, Zhang J, Yang X, Zhou S, Li X, Liu W (2018) Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front Plant Sci 9:817
pubmed: 29971077
pmcid: 6018490
doi: 10.3389/fpls.2018.00817
Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655
pubmed: 10464789
doi: 10.1139/g99-044
King JL, Grewal S, Yang CY, Hubbart S, Scholefield D, Ashling S, Edwards KJ, Allen AM, Burridge A, Bloor C, Davassi A, da Silva GJ, Chalmers K, King IP (2017) A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol J 15:217–226
pubmed: 27459228
doi: 10.1111/pbi.12606
Li A, Yang W, Guo X, Liu D, Sun J, Zhang A (2012) Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Mol Breeding 30:1443–1451
doi: 10.1007/s11032-012-9730-y
Li QF, Lu YQ, Pan CL, Zhang JP, Liu WH, Yang XM, Li XQ, Xi YJ, Li LH (2016) Characterization of a Novel wheat-Agropyron cristatum 2P disomic addition line with powdery mildew resistance. Crop Sci 56:2390–2400
doi: 10.2135/cropsci2015.10.0638
Li GR, Zhang T, Yu ZH, Wang HJ, Yang EN, Yang ZJ (2021) An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J 105:978–993
pubmed: 33210785
doi: 10.1111/tpj.15081
Ling HQ, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428
pubmed: 29743678
pmcid: 6784869
doi: 10.1038/s41586-018-0108-0
Liu WH, Luan Y, Wang JC, Wang XG, Su JJ, Zhang JP, Yang XM, Gao AN, Li LH (2010) Production and identification of wheat–Agropyron cristatum (1.4P) alien translocation lines. Genome 53:472–481
pubmed: 20555436
doi: 10.1139/G10-023
Liu K, Xu H, Liu G, Guan P, Zhou X, Peng H, Yao Y, Ni Z, Sun Q, Du J (2018) QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet 131:839–849
pubmed: 29359263
pmcid: 5852184
doi: 10.1007/s00122-017-3040-z
Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li SQ, Liu JJ, Ding PY, Habib A, Mu Y, Tang HP, Liu YX, Jiang QT, Chen GY, Wang JR, Li W, Pu ZE, Zheng YL, Wei YM, Kang HY, Chen GD, Lan XJ (2020) Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor and Appl Genet 133:297–315
doi: 10.1007/s00122-019-03458-2
Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318
doi: 10.1038/382313a0
Mansfield BD, Mumm RH (2014) Survey of plant density tolerance in US maize germplasm. Crop Sci 54:157–173
doi: 10.2135/cropsci2013.04.0252
Mo Y, Vanzetti LS, Hale I, Spagnolo EJ, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J (2018) Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet 131:2021–2035
pubmed: 29959472
doi: 10.1007/s00122-018-3130-6
Pan C, Li Q, Lu Y, Zhang J, Yang X, Li X, Li L, Liu W (2017) Chromosomal localization of genes conferring desirable agronomic traits from Agropyron cristatum chromosome 1P. PLoS ONE 12:e0175265
pubmed: 28394901
pmcid: 5386269
doi: 10.1371/journal.pone.0175265
Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831
pubmed: 22013218
pmcid: 3327217
doi: 10.1104/pp.111.183657
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261
pubmed: 10421366
doi: 10.1038/22307
Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851
pubmed: 12223466
pmcid: 1084230
doi: 10.1093/embo-reports/kvf177
Ru ZG, Feng SW, Li G (2015) High yield potential and practical approaches for wheat cultivars in the Huang Huai wheat region. Scientia Agricultura Sinica 48:3388–3393
Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5:291–317
doi: 10.1007/s12571-013-0263-y
Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem and stripe rusts and omega-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616
pubmed: 24221066
doi: 10.1007/BF00224219
Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048
pubmed: 12077303
pmcid: 124420
doi: 10.1073/pnas.132266399
Subbarao GV, Kishii M, Bozal-Leorri A, Ortiz-Monasterio I, Gao X, Ibba MI, Karwat H, Gonzalez-Moro MB, Gonzalez-Murua C, Yoshihashi T, Tobita S, Kommerell V, Braun HJ, Iwanaga M (2021) Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution. Proc Natl Acad Sci USA 118:e2106595118
pubmed: 34426500
pmcid: 8536370
doi: 10.1073/pnas.2106595118
Sun YY, Lyu MJ, Han HM, Zhou SH, Lu YQ, Liu WH, Yang XM, Li XQ, Zhang JP, Liu X, Li LH (2021) Identification and fine mapping of alien fragments associated with enhanced grain weight from Agropyron cristatum chromosome 7P in common wheat backgrounds. Theor Appl Genet 134:3759–3772
pubmed: 34355268
doi: 10.1007/s00122-021-03927-7
Tang S, Tang Z, Qiu L, Yang Z, Li G, Lang T, Zhu W, Zhang J, Fu S (2018) Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Front Plant Sci 9:1104
pubmed: 30093909
pmcid: 6070686
doi: 10.3389/fpls.2018.01104
Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–664
pubmed: 31416957
doi: 10.1126/science.aax5482
Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264
pubmed: 22106295
pmcid: 3250154
doi: 10.1073/pnas.1116437108
Villareal RL, Mujeeb-Kazi A, Rajaram S, Toro ED (1994) Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Breeding Sci 44:7–11
Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279
pubmed: 18444901
doi: 10.1146/annurev.arplant.59.032607.092902
Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14:94–99
pubmed: 21144796
doi: 10.1016/j.pbi.2010.11.002
Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20
pubmed: 17031609
doi: 10.1007/s00122-006-0405-0
Wu QH, Chen YX, Fu L, Zhou SH, Chen JJ, Zhao XJ, Zhang D, Ouyang SH, Wang ZZ, Li D, Wang GX, Zhang DY, Yuan CG, Wang LX, You MS, Han J, Liu ZY (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351
doi: 10.1007/s10681-015-1603-0
Xue S, Xu F, Li G, Zhou Y, Lin M, Gao Z, Su X, Xu X, Jiang G, Zhang S, Jia H, Kong Z, Zhang L, Ma Z (2013a) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126:1941–1949
pubmed: 23661078
doi: 10.1007/s00122-013-2108-7
Xue SL, Xu F, Li GQ, Zhou Y, Lin MS, Gao ZX, Su XH, Xu XW, Jiang G, Zhang S, Jia HY, Kong ZX, Zhang LX, Ma ZQ (2013b) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126:1941–1949
pubmed: 23661078
doi: 10.1007/s00122-013-2108-7
Yan X, Wang S, Yang B, Zhang W, Jing R (2020) QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PLoS ONE 15:e0229912
pubmed: 32191715
pmcid: 7082017
doi: 10.1371/journal.pone.0229912
Zhang J, Zhang JP, Liu WH, Wu XY, Yang XM, Li XQ, Lu YQ, Li LH (2016) An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta 244:853–864
pubmed: 27246315
doi: 10.1007/s00425-016-2550-2
Zhang J, Liu W, Lu Y, Liu Q, Yang X, Li X, Li L (2017) A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences. Sci Rep 7:11942
pubmed: 28931929
pmcid: 5607264
doi: 10.1038/s41598-017-12219-4
Zhou SH, Zhang JP, Che YH, Liu WH, Lu YQ, Yang XM, Li XQ, Jia JZ, Liu X, Li LH (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J 16:818–827
pubmed: 28921769
doi: 10.1111/pbi.12831