Novel drug-target interactions via link prediction and network embedding.
Drug repurposing
Graph-embedding
Link prediction
Machine learning
Journal
BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194
Informations de publication
Date de publication:
04 Apr 2022
04 Apr 2022
Historique:
received:
29
10
2021
accepted:
17
03
2022
entrez:
5
4
2022
pubmed:
6
4
2022
medline:
7
4
2022
Statut:
epublish
Résumé
As many interactions between the chemical and genomic space remain undiscovered, computational methods able to identify potential drug-target interactions (DTIs) are employed to accelerate drug discovery and reduce the required cost. Predicting new DTIs can leverage drug repurposing by identifying new targets for approved drugs. However, developing an accurate computational framework that can efficiently incorporate chemical and genomic spaces remains extremely demanding. A key issue is that most DTI predictions suffer from the lack of experimentally validated negative interactions or limited availability of target 3D structures. We report DT2Vec, a pipeline for DTI prediction based on graph embedding and gradient boosted tree classification. It maps drug-drug and protein-protein similarity networks to low-dimensional features and the DTI prediction is formulated as binary classification based on a strategy of concatenating the drug and target embedding vectors as input features. DT2Vec was compared with three top-performing graph similarity-based algorithms on a standard benchmark dataset and achieved competitive results. In order to explore credible novel DTIs, the model was applied to data from the ChEMBL repository that contain experimentally validated positive and negative interactions which yield a strong predictive model. Then, the developed model was applied to all possible unknown DTIs to predict new interactions. The applicability of DT2Vec as an effective method for drug repurposing is discussed through case studies and evaluation of some novel DTI predictions is undertaken using molecular docking. The proposed method was able to integrate and map chemical and genomic space into low-dimensional dense vectors and showed promising results in predicting novel DTIs.
Sections du résumé
BACKGROUND
BACKGROUND
As many interactions between the chemical and genomic space remain undiscovered, computational methods able to identify potential drug-target interactions (DTIs) are employed to accelerate drug discovery and reduce the required cost. Predicting new DTIs can leverage drug repurposing by identifying new targets for approved drugs. However, developing an accurate computational framework that can efficiently incorporate chemical and genomic spaces remains extremely demanding. A key issue is that most DTI predictions suffer from the lack of experimentally validated negative interactions or limited availability of target 3D structures.
RESULTS
RESULTS
We report DT2Vec, a pipeline for DTI prediction based on graph embedding and gradient boosted tree classification. It maps drug-drug and protein-protein similarity networks to low-dimensional features and the DTI prediction is formulated as binary classification based on a strategy of concatenating the drug and target embedding vectors as input features. DT2Vec was compared with three top-performing graph similarity-based algorithms on a standard benchmark dataset and achieved competitive results. In order to explore credible novel DTIs, the model was applied to data from the ChEMBL repository that contain experimentally validated positive and negative interactions which yield a strong predictive model. Then, the developed model was applied to all possible unknown DTIs to predict new interactions. The applicability of DT2Vec as an effective method for drug repurposing is discussed through case studies and evaluation of some novel DTI predictions is undertaken using molecular docking.
CONCLUSIONS
CONCLUSIONS
The proposed method was able to integrate and map chemical and genomic space into low-dimensional dense vectors and showed promising results in predicting novel DTIs.
Identifiants
pubmed: 35379165
doi: 10.1186/s12859-022-04650-w
pii: 10.1186/s12859-022-04650-w
pmc: PMC8978405
doi:
Substances chimiques
Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
121Subventions
Organisme : CRUK/NIHR in England/DoH Experimental Cancer Medicine Centre
ID : C10355/A15587
Organisme : UKR
ID : EP/V01479X/1
Organisme : Medical Research Council
ID : MR/L023091/1
Pays : United Kingdom
Organisme : Health Research (NIHR) Biomedical Research Centre (BRC)
ID : IS-BRC-1215-20006
Organisme : Cancer Research UK King's Health Partners CentreC604/A25135
ID : C604/A25135
Organisme : Breast Cancer Now
ID : 147; KCL-BCN-Q3
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Nat Rev Drug Discov. 2004 Aug;3(8):673-83
pubmed: 15286734
BMC Bioinformatics. 2021 Sep 3;22(1):418
pubmed: 34479477
Nat Rev Immunol. 2003 Oct;3(10):781-90
pubmed: 14523385
Int J Biol Markers. 2018 Jan;33(1):102-108
pubmed: 28623645
Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7
pubmed: 21948594
Magn Reson Imaging. 2007 Apr;25(3):319-27
pubmed: 17371720
Sci Rep. 2020 Apr 22;10(1):6870
pubmed: 32322011
J Cheminform. 2014 Nov 26;6(1):47
pubmed: 25506400
Front Oncol. 2018 Feb 12;8:24
pubmed: 29484286
Front Immunol. 2018 Jan 31;9:151
pubmed: 29445380
Signal Transduct Target Ther. 2020 Jul 2;5(1):113
pubmed: 32616710
J Biol Chem. 2011 Mar 4;286(9):7587-600
pubmed: 21193411
Semin Cancer Biol. 2015 Dec;35 Suppl:S185-S198
pubmed: 25818339
J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80
pubmed: 12444722
J Immunol. 2003 Dec 15;171(12):6891-9
pubmed: 14662896
Nat Rev Drug Discov. 2014 Jan;13(1):39-62
pubmed: 24378802
Bioinformatics. 2020 Feb 15;36(4):1241-1251
pubmed: 31584634
Nat Rev Drug Discov. 2019 Jun;18(6):463-477
pubmed: 30976107
Breast Cancer Res Treat. 2012 Jun;133(3):1057-65
pubmed: 22418700
Lancet Oncol. 2016 May;17(5):577-89
pubmed: 27083334
Oncogene. 2020 May;39(19):3791-3802
pubmed: 32203163
J Cheminform. 2017 Aug 14;9(1):45
pubmed: 29086168
BMC Bioinformatics. 2020 Feb 7;21(1):49
pubmed: 32033537
BMC Bioinformatics. 2020 Dec 16;21(Suppl 16):560
pubmed: 33323115
Nat Commun. 2019 Nov 19;10(1):5221
pubmed: 31745082
Nat Chem Biol. 2008 Nov;4(11):682-90
pubmed: 18936753
J Cheminform. 2020 Jun 29;12(1):44
pubmed: 33431036
Bioorg Med Chem Lett. 2007 Jan 1;17(1):34-9
pubmed: 17064892
BMC Bioinformatics. 2017 Jan 17;18(1):39
pubmed: 28095781
Sci Rep. 2017 Jan 12;7:40376
pubmed: 28079135
Nat Rev Drug Discov. 2019 Jan;18(1):41-58
pubmed: 30310233
J Comput Aided Mol Des. 2019 Sep;33(9):831-844
pubmed: 31628660
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W270-7
pubmed: 21624888
J Cheminform. 2015 May 20;7:20
pubmed: 26052348
J Clin Oncol. 2005 Aug 20;23(24):5474-83
pubmed: 16027439
Cell Oncol (Dordr). 2020 Jun;43(3):335-352
pubmed: 32219702
Biomed Pharmacother. 2013 Mar;67(2):179-82
pubmed: 23201006
Bioinformatics. 2020 Aug 15;36(16):4490-4497
pubmed: 32399556
Bioinformatics. 2015 Jun 1;31(11):1857-9
pubmed: 25619996
Brief Bioinform. 2020 May 21;21(3):791-802
pubmed: 31220208
Trends Biotechnol. 2010 Apr;28(4):161-70
pubmed: 20349528
Naunyn Schmiedebergs Arch Pharmacol. 2015 Dec;388(12):1271-82
pubmed: 26264806
Nat Protoc. 2014 Sep;9(9):2147-63
pubmed: 25122524
Bioinformatics. 2020 Jan 15;36(2):603-610
pubmed: 31368482
Bioinformatics. 2008 Jul 1;24(13):i232-40
pubmed: 18586719
J Immunother Cancer. 2015 Dec 15;3:51
pubmed: 26674411
Bioinformatics. 2013 Aug 15;29(16):2004-8
pubmed: 23720490
BMC Bioinformatics. 2019 Dec 18;20(1):726
pubmed: 31852427
Br J Cancer. 2015 Sep 15;113(6):945-51
pubmed: 26284334
Brief Bioinform. 2014 Sep;15(5):734-47
pubmed: 23933754
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Jun;1864(6):784-788
pubmed: 30003964
KDD. 2016 Aug;2016:855-864
pubmed: 27853626
J Transl Med. 2020 Sep 7;18(1):347
pubmed: 32894154
Nat Rev Cancer. 2009 Jun;9(6):445-52
pubmed: 19461669
J Cheminform. 2011 Oct 07;3:33
pubmed: 21982300
Nat Commun. 2017 Sep 18;8(1):573
pubmed: 28924171
J Am Chem Soc. 2003 Oct 1;125(39):11853-65
pubmed: 14505407
J Comput Biol. 2011 Feb;18(2):133-45
pubmed: 21314453
PLoS Comput Biol. 2016 Feb 12;12(2):e1004760
pubmed: 26872142
Mol Inform. 2019 Mar;38(3):e1800028
pubmed: 30251339
J Cheminform. 2016 Apr 23;8:20
pubmed: 27110288
Nat Biotechnol. 2014 Feb;32(2):113-5
pubmed: 24509736
Brief Bioinform. 2021 Jan 18;22(1):247-269
pubmed: 31950972
P T. 2014 Jul;39(7):483-519
pubmed: 25083126
Gastroenterology. 2008 Feb;134(2):379
pubmed: 18242200
Bioinformatics. 2018 Apr 1;34(7):1164-1173
pubmed: 29186331
Brief Bioinform. 2016 Jul;17(4):696-712
pubmed: 26283676
Brief Bioinform. 2015 Mar;16(2):325-37
pubmed: 24723570
Int J Cancer. 2011 Nov 1;129(9):2051-61
pubmed: 21544803
Brief Bioinform. 2019 Jul 19;20(4):1465-1474
pubmed: 29420684
Oncol Lett. 2018 Apr;15(4):5257-5263
pubmed: 29552165
Nat Med. 2003 Oct;9(10):1269-74
pubmed: 14502282
Cancer Res. 2008 Aug 1;68(15):6368-76
pubmed: 18676862