An Erwinia amylovora inducible promoter for improvement of apple fire blight resistance.


Journal

Plant cell reports
ISSN: 1432-203X
Titre abrégé: Plant Cell Rep
Pays: Germany
ID NLM: 9880970

Informations de publication

Date de publication:
Jul 2022
Historique:
received: 14 01 2022
accepted: 18 03 2022
pubmed: 8 4 2022
medline: 14 7 2022
entrez: 7 4 2022
Statut: ppublish

Résumé

pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes. Intragenesis is an important alternative to transgenesis to produce modified plants containing native DNA only. A key point to develop such a strategy is the availability of regulatory sequences controlling the expression of the gene of interest. With the aim of finding apple gene promoters either inducible by the fire blight pathogen Erwinia amylovora (Ea) or moderately constitutive, we focused on polyphenoloxidase genes (PPO). These genes encode oxidative enzymes involved in many physiological processes and have been previously shown to be upregulated during the Ea infection process. We found ten PPO and two PPO-like sequences in the apple genome and characterized the promoters of MdPPO16 (pPPO16) and MdKFDV02 PPO-like (pKFDV02) for their potential as Ea-inducible and low-constitutive regulatory sequences, respectively. Expression levels of reporter genes fused to these promoters and transiently or stably expressed in apple were quantified after various treatments. Unlike pKFDV02 which displayed a variable activity, pPPO16 allowed a fast and strong expression of transgenes in apple following Ea infection in a Type 3 Secretion System dependent manner. Altogether our results does not confirmed pKFDV02 as a constitutive and weak promoter whereas pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes.

Identifiants

pubmed: 35385991
doi: 10.1007/s00299-022-02869-8
pii: 10.1007/s00299-022-02869-8
pmc: PMC9270298
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1499-1513

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Barny MA (1995) Erwinia amylovora hrpN mutants, blocked in harpin synthesis, express a reduced virulence on host plants and elicit variable hypersensitive reactions on tobacco. Eur J Plant Pathol 101:333–340. https://doi.org/10.1007/BF01874789
doi: 10.1007/BF01874789
Borejsza-Wysocka E, Norelli JL, Aldwinckle HS et al (2010) Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 years period. BMC Biotechnol 10:41. https://doi.org/10.1186/1472-6750-10-41
doi: 10.1186/1472-6750-10-41 pubmed: 20525262 pmcid: 2910661
Boss PK, Gardner RC, Janssen BJ et al (1995) An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Plant Mol Biol 27:429–433. https://doi.org/10.1007/BF00020197
doi: 10.1007/BF00020197 pubmed: 7888632
Boureau T, El Maarouf-Bouteau H, Garnier A et al (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and non-host tobacco plants. Mol Plant Microbe Interact 19:16–24. https://doi.org/10.1094/MPMI-19-0016
doi: 10.1094/MPMI-19-0016 pubmed: 16404949
Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
doi: 10.1016/0003-2697(76)90527-3 pubmed: 942051
Broggini GA, Wöhner T, Fahrentrapp J et al (2014) Engineering fire blight resistance into the apple cultivar “Gala” using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnol J 12:728–733. https://doi.org/10.1111/pbi.12177
doi: 10.1111/pbi.12177 pubmed: 24618178
Campa M, Piazza S, Righetti L et al (2019) HIPM is a susceptibility gene of Malus spp.: reduced expression reduces susceptibility to Erwinia amylovora. Mol Plant Microbe Interact 32:167–175. https://doi.org/10.1094/MPMI-05-18-0120-R
doi: 10.1094/MPMI-05-18-0120-R pubmed: 29996678
Chevreau E, Dupuis F, Taglioni JP et al (2011) Effect of ectopic expression of the eutypine detoxifying gene Vr-ERE in transgenic apple plants. Plant Cell Tissue Org Cult 106:161–168. https://doi.org/10.1007/s11240-010-9904-4
doi: 10.1007/s11240-010-9904-4
Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16:232. https://doi.org/10.1186/s12870-016-0921-2
doi: 10.1186/s12870-016-0921-2 pubmed: 27782807 pmcid: 5080799
Constabel CP, Barbehenn RV (2008) Defensive roles of polyphenol oxidase in plants. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, New York, pp 253–269
doi: 10.1007/978-1-4020-8182-8_12
Daccord N, Celton JM, Linsmith G et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106. https://doi.org/10.1038/ng.3886
doi: 10.1038/ng.3886 pubmed: 28581499
Di Guardo M, Tadiello A, Farneti B et al (2013) A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.). PLoS ONE 8:e78004. https://doi.org/10.1371/journal.pone.0078004
doi: 10.1371/journal.pone.0078004 pubmed: 24205065 pmcid: 3799748
Dugé de Bernonville T (2009) Caractérisations histologique, moléculaire et biochimique des interactions compatible et incompatible entre Erwinia amylovora, agent du feu bactérien, et le pommier (Malus x domestica). PhD thesis Angers University. https://tel.archives-ouvertes.fr/tel-00482385/fr/
Dugé de Bernonville T, Gaucher M, Flors V et al (2012) T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora. Plant Sci 188–189:1–9. https://doi.org/10.1016/j.plantsci.2012.02.009
doi: 10.1016/j.plantsci.2012.02.009 pubmed: 22525238
Dugé de Bernonville T, Marolleau B, Staub J et al (2014) Using molecular tools to decipher the complex world of plant resistance inducers: an apple case study. J Agric Food Chem 62:11403–11411. https://doi.org/10.1021/jf504221x
doi: 10.1021/jf504221x pubmed: 25372566
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340
doi: 10.1093/nar/gkh340 pubmed: 15034147 pmcid: 390337
Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971. https://doi.org/10.1038/nprot.2007.131
doi: 10.1038/nprot.2007.131 pubmed: 17446895
Faize M, Malnoy M, Dupuis F et al (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathol 93:1496–1504. https://doi.org/10.1094/PHYTO.2003.93.12.1496·
doi: 10.1094/PHYTO.2003.93.12.1496·
Fitzgerald HA, Chern MS, Navarre R et al (2004) Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact 17:140–151. https://doi.org/10.1094/MPMI.2004.17.2.140
doi: 10.1094/MPMI.2004.17.2.140 pubmed: 14964528
Flachowsky H, Richter K, Kim WS et al (2008a) Transgenic expression of a viral EPS-depolymerase is potentially useful to induce fire blight resistance in apple. Ann Appl Biol 153:345–355. https://doi.org/10.1111/j.1744-7348.2008.00264.x
doi: 10.1111/j.1744-7348.2008.00264.x
Flachowsky H, Peil A, Rollins J et al (2008b) Improved fire blight resistance in transgenic apple lines by constitutive overexpression of the mbr4 gene of Malus x baccata. Acta Hort 793:287–291. https://doi.org/10.17660/ActaHortic.2008.793.42
doi: 10.17660/ActaHortic.2008.793.42
Flachowsky H, Szankowski I, Fischer TC et al (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635. https://doi.org/10.1007/s00425-009-1074-4
doi: 10.1007/s00425-009-1074-4 pubmed: 19967387
Flachowsky H, Halbwirth H, Treutter D et al (2012) Silencing of flavanone-3-hydroxylase in apple (Malus x domestica Borkh) leads to accumulation of flavanones, but not to reduced fire blight susceptibility. Plant Physiol Biochem 51:18–25. https://doi.org/10.1016/j.plaphy.2011.10.004
doi: 10.1016/j.plaphy.2011.10.004 pubmed: 22153235
Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209. https://doi.org/10.1007/BF02670897
doi: 10.1007/BF02670897
Gaucher M, Dugé de Bernonville T, Guyot S et al (2013) Same ammo, different weapons: enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro. Plant Physiol Biochem 72:178–189. https://doi.org/10.1016/j.plaphy.2013.03.012
doi: 10.1016/j.plaphy.2013.03.012 pubmed: 23561298
Großkinsky DK, van der Graaf E, Roitsch T (2012) Phytoalexin transgenics in crop protection. Plant Sci 195:54–70. https://doi.org/10.1016/j.plantsci.2012.06.008
doi: 10.1016/j.plantsci.2012.06.008 pubmed: 22920999
Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Biotech 23:275–282. https://doi.org/10.1016/j.tibtech.2005.04.007
doi: 10.1016/j.tibtech.2005.04.007
Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155. https://doi.org/10.1111/j.1467-7652.2004.00113.x
doi: 10.1111/j.1467-7652.2004.00113.x pubmed: 17173615
Hellens RP, Allan AC, Friel EN et al (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:1–13. https://doi.org/10.1186/1746-4811-1-13
doi: 10.1186/1746-4811-1-13
Herzog K, Flachowsky H, Deising HB et al (2012) Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.). Gene 498:41–49. https://doi.org/10.1016/j.gene.2012.01.074
doi: 10.1016/j.gene.2012.01.074 pubmed: 22349025
Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407. https://doi.org/10.1111/pbi.12055
doi: 10.1111/pbi.12055 pubmed: 23421562
Hood EE, Gelvin SB, Melchers LS et al (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218. https://doi.org/10.1007/BF01977351
doi: 10.1007/BF01977351
Hutabarat OS, Flachowsky H, Regos I et al (2016) Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta 243:1213–1224. https://doi.org/10.1007/s00425-016-2475-9
doi: 10.1007/s00425-016-2475-9 pubmed: 26895335 pmcid: 4837221
Joshi SG, Schaart JG, Groenwold R et al (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591. https://doi.org/10.1007/s11103-011-9749-1
doi: 10.1007/s11103-011-9749-1 pubmed: 21293908 pmcid: 3057008
Kanchiswamy CN, Mohanta TK, Capuzzo A et al (2013) Differential expression of CPKs and cytosolic Ca
doi: 10.1186/1471-2164-14-760
Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195. https://doi.org/10.1016/S1360-1385(02)02251-3
doi: 10.1016/S1360-1385(02)02251-3 pubmed: 11992820
Khan MA, Zhao YF, Korban SS (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30:247–260. https://doi.org/10.1007/s11105-011-0334-1
doi: 10.1007/s11105-011-0334-1
King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
pubmed: 13184240
Kortstee AJ, Khan SA, Helderman C et al (2011) Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic Res 20:1253–1264. https://doi.org/10.1007/s11248-011-9490-1
doi: 10.1007/s11248-011-9490-1 pubmed: 21340526 pmcid: 3210953
Kost TD, Gessler C, Jänsch M et al (2015) Development of the first cisgenic apple with increased resistance to fire blight. PLoS ONE 10:e0143980. https://doi.org/10.1371/journal.pone.0143980
doi: 10.1371/journal.pone.0143980 pubmed: 26624292 pmcid: 4666654
Krens FA, Schaart JG, van der Burgh AM et al (2015) Cisgenic apple trees; development, characterization, and performance. Front Plant Sci 6:286. https://doi.org/10.3389/fpls.2015.00286
doi: 10.3389/fpls.2015.00286 pubmed: 25964793 pmcid: 4410516
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
doi: 10.1093/molbev/msw054 pubmed: 27004904 pmcid: 8210823
Lespinasse Y, Durel CE, Parisi L et al (2000) A European project: D.A.R.E. durable apple resistance in Europe. Acta Hortic 538:197–200. https://doi.org/10.17660/ActaHortic.2000.538.32
doi: 10.17660/ActaHortic.2000.538.32
Limera C, Sabbadini S, Sweet JB et al (2017) New biotechnological tools for the genetic improvement of major woody fruit species. Front Plant Sci 8:1418. https://doi.org/10.3389/fpls.2017.01418
doi: 10.3389/fpls.2017.01418 pubmed: 28861099 pmcid: 5559511
Malnoy M, Jin Q, Borejsza-Wysocka EE et al (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant Microbe Interact 20:1568–1580. https://doi.org/10.1094/MPMI-20-12-1568
doi: 10.1094/MPMI-20-12-1568 pubmed: 17990964
Malnoy M, Borejsza-Wysocka EE, Pascal-Omenaca L et al (2008) Silencing of HIPM, the apple protein that interacts with HrpN of Erwinia amylovora. Acta Hortic 793:261–264. https://doi.org/10.17660/ActaHortic.2008.793.38
doi: 10.17660/ActaHortic.2008.793.38
Ortega F, Steiner U, Dehne HW (1998) Induced resistance to apple scab: microscopic studies on the infection cycle of Venturia inaequalis (Cke.) Wint. J Phytopathol 146:399–405. https://doi.org/10.1111/j.1439-0434.1998.tb04771.x
doi: 10.1111/j.1439-0434.1998.tb04771.x
Parisi L, Lespinasse Y (1996) Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp.). Plant Dis 80:1179–1183. https://doi.org/10.1094/PD-80-1179
doi: 10.1094/PD-80-1179
Parisi L, Lespinasse Y, Guillaumes J et al (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537. https://doi.org/10.1007/978-94-011-0467-8_16
doi: 10.1007/978-94-011-0467-8_16
Paulin JP (1996) Control of fire blight in European pome fruits. Outlook Agric 25:49–55. https://doi.org/10.1177/003072709602500109
doi: 10.1177/003072709602500109
Paulin JP, Samson R (1973) Le feu bactérien en France. II. Caractères des souches d’Erwinia amylovora (Burrill) isolées du foyer franco-belge. Annales De Phytopathologie 5:389–397
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res 29:e45. https://doi.org/10.1093/nar/29.9.e45
doi: 10.1093/nar/29.9.e45 pubmed: 11328886 pmcid: 55695
Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464. https://doi.org/10.1016/j.pbi.2004.05.006
doi: 10.1016/j.pbi.2004.05.006 pubmed: 15231270
Pompili V, Dalla Costa L, Piazza S et al (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J 18:845–858. https://doi.org/10.1111/pbi.13253
doi: 10.1111/pbi.13253 pubmed: 31495052
Pontais I, Treutter D, Paulin JP et al (2008) Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Physiol Plant 132:262–271. https://doi.org/10.1111/j.1399-3054.2007.01004.x
doi: 10.1111/j.1399-3054.2007.01004.x pubmed: 18275458
Pourcel L, Routaboul JM, Cheynier V et al (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36. https://doi.org/10.1016/j.tplants.2006.11.006
doi: 10.1016/j.tplants.2006.11.006 pubmed: 17161643
R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Righetti L, Djennane S, Berthelot P et al (2014) Elimination of the nptII marker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase. Plant Cell Tissue Org Cult 117:335–348. https://doi.org/10.1016/j.gene.2012.01.074
doi: 10.1016/j.gene.2012.01.074
Rinaldi C, Kohler A, Frey P et al (2007) Transcript prowling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora laricipopulina. Plant Physiol 144:347–366. https://doi.org/10.1104/pp.106.094987
doi: 10.1104/pp.106.094987 pubmed: 17400708 pmcid: 1913798
Rommens CM, Haring MA, Swords K et al (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403. https://doi.org/10.1016/j.tplants.2007.08.001
doi: 10.1016/j.tplants.2007.08.001 pubmed: 17692557
Santos-Rosa M, Poutaraud A, Merdinoglu D et al (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053. https://doi.org/10.1007/s00299-008-0531-z
doi: 10.1007/s00299-008-0531-z pubmed: 18317773
Saxena I, Srikanth S, Chen Z (2016) Talk between H
doi: 10.3389/fpls.2016.00570 pubmed: 27200043 pmcid: 4848386
Schouten HJ, Krens FA, Jacobsen E (2006) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24:753. https://doi.org/10.1038/nbt0706-753
doi: 10.1038/nbt0706-753 pubmed: 16841052
Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75
doi: 10.1038/msb.2011.75 pubmed: 21988835 pmcid: 3261699
Skłodowska M, Gajewska E, Kuźniak E et al (2011) Antioxidant profile and polyphenol oxidase activities in apple leaves after Erwinia amylovora infection and pretreatment with a benzothiadiazole-type resistance inducer (BTH). J Phytopathol 159:495–504. https://doi.org/10.1111/j.1439-0434.2011.01793.x
doi: 10.1111/j.1439-0434.2011.01793.x
Small I, Peeters N, Legeai F et al (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590. https://doi.org/10.1002/pmic.200300776
doi: 10.1002/pmic.200300776 pubmed: 15174128
Thipyapong P, Steffens JC (1997) Tomato polyphenol oxidase (differential response of the polyphenol oxidase F promoter to injuries and wound signals). Plant Physiol 115:409–418. https://doi.org/10.1104/pp.115.2.409·
doi: 10.1104/pp.115.2.409· pubmed: 12223816 pmcid: 158498
Thipyapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12:1569–1595. https://doi.org/10.3390/12081569·
doi: 10.3390/12081569· pubmed: 17960074 pmcid: 6149088
Tran LT, Constabel CP (2011) The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform. Planta 234:799–813. https://doi.org/10.1007/s00425-011-1441-9
doi: 10.1007/s00425-011-1441-9 pubmed: 21633811
Tran LT, Taylor JS, Constabel CP (2012) The polyphenol oxidase gene family in land plants: lineage-specific duplication and expansion. BMC Genom 13:395. https://doi.org/10.1186/1471-2164-13-395
doi: 10.1186/1471-2164-13-395
Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034
doi: 10.1186/gb-2002-3-7-research0034 pubmed: 12184808 pmcid: 126239
Vanneste JL (2000) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, Wallingford
doi: 10.1079/9780851992945.0000
Venisse JS, Malnoy M, Faize M et al (2002) Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Mol Plant Microbe Interact 15:1204–1212. https://doi.org/10.1094/MPMI.2002.15.12.1204
doi: 10.1094/MPMI.2002.15.12.1204 pubmed: 12481992
Vergne E, Dugé de Bernonville T, Dupuis F et al (2014) Membrane targeted HrpN
doi: 10.1094/MPMI-10-13-0305-R pubmed: 24156770
Vogt I, Wöhner T, Richter K et al (2013) Gene-for-gene relationship in the host-pathogen system Malus x robusta 5-Erwinia amylovora. New Phytol 197:1262–1275. https://doi.org/10.1111/nph.12094
doi: 10.1111/nph.12094 pubmed: 23301854
Voinnet O, Rivas S, Mestre P et al (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein oftomato bushy stunt virus. Plant J 33:949–956. https://doi.org/10.1046/j.1365-313X.2003.01676.x
doi: 10.1046/j.1365-313X.2003.01676.x pubmed: 12609035
Vrancken K, Holtappels M, Schoofs H et al (2013) Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art. Microbiol 159:823–832. https://doi.org/10.1099/mic.0.064881-0
doi: 10.1099/mic.0.064881-0
Yao JL, Tomes S, Gleave AP (2013) Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites. Plant Cell Rep 32:703–714. https://doi.org/10.1007/s00299-013-1404-7
doi: 10.1007/s00299-013-1404-7 pubmed: 23494389

Auteurs

Matthieu Gaucher (M)

Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.

Laura Righetti (L)

Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy.

Sébastien Aubourg (S)

Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.

Thomas Dugé de Bernonville (T)

EA2106 Biomolécules et Biotechnologies Végétales, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 avenue Monge, 37200, Tours, France.

Marie-Noëlle Brisset (MN)

Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.

Elisabeth Chevreau (E)

Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.

Emilie Vergne (E)

Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France. Emilie.vergne@inrae.fr.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH