Linking transcriptional dynamics of CH


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
07 2022
Historique:
received: 23 08 2021
accepted: 21 03 2022
revised: 07 03 2022
pubmed: 8 4 2022
medline: 24 6 2022
entrez: 7 4 2022
Statut: ppublish

Résumé

Soil CH

Identifiants

pubmed: 35388141
doi: 10.1038/s41396-022-01229-4
pii: 10.1038/s41396-022-01229-4
pmc: PMC9213473
doi:

Substances chimiques

RNA, Messenger 0
Soil 0
Carbon Dioxide 142M471B3J
Methane OP0UW79H66

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1788-1797

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : UR198/3-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : MA4436/2-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : UR198/5-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : KO2912/12-1

Informations de copyright

© 2022. The Author(s).

Références

Canadell JG, Monteiro PMS, Costa, MH, Cotrim da Cunha L, Cox PM, Eliseev AV, et al. Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2021, in press.
Rosentreter JA, Borges AV, Deemer BR, Holgerson MA, Liu S, Song C, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat Geosci. 2021;14:225–30.
doi: 10.1038/s41561-021-00715-2
Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000 – 2017. Earth Syst. Sci Data. 2020;12:1561–623.
Lamentowicz M, Gałka M, Pawlyta J, Lamentowicz Ł, Goslar T, Miotk-Szpiganowicz G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Stud Quat. 2011;28:3–16.
Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65:934–41.
doi: 10.1071/MF14173
Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. Greenhouse gas emissions from soils - a review. Geochemistry. 2016;76:327–52.
doi: 10.1016/j.chemer.2016.04.002
Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol Rev. 2000;24:625–45.
pubmed: 11077155 doi: 10.1111/j.1574-6976.2000.tb00563.x
Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285–92.
pubmed: 23765881 doi: 10.1111/j.1758-2229.2009.00038.x
Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol. 2018;28:R727–R732.
pubmed: 29990451 doi: 10.1016/j.cub.2018.05.021
Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME J. 2021;15:3549–65.
pubmed: 34145392 pmcid: 8630106 doi: 10.1038/s41396-021-01025-6
Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, et al. Methane production from coal by a single methanogen. Science. 2016;354:222–6.
pubmed: 27738170 doi: 10.1126/science.aaf8821
Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol. 2013;19:1325–46.
pubmed: 23505021 doi: 10.1111/gcb.12131
Narrowe AB, Borton MA, Hoyt DW, Smith GJ, Daly RA, Angle JC, et al. Uncovering the diversity and activity of methylotrophic methanogens in freshwater wetland soils. mSystems. 2019;4:e00320–19.
pubmed: 31796563 pmcid: 6890927 doi: 10.1128/mSystems.00320-19
Zalman CA, Meade N, Chanton J, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biol Biochem. 2018;118:156–60.
doi: 10.1016/j.soilbio.2017.11.025
Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.
pubmed: 26696968 pmcid: 4678205 doi: 10.3389/fmicb.2015.01346
Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 2001;37:25–50.
doi: 10.1016/S1164-5563(01)01067-6
Wieczorek AS, Drake HL, Kolb S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol. 2011;77:28–39.
pubmed: 21385187 doi: 10.1111/j.1574-6941.2011.01080.x
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep. 2016;8:941–55.
pubmed: 27753265 doi: 10.1111/1758-2229.12487
Cui M, Ma A, Qi H, Zhuang X, Zhuang G. Anaerobic oxidation of methane: An ‘active’ microbial process. Microbiol Open. 2015;4:1–11.
doi: 10.1002/mbo3.232
Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA. 2016;113:12792–6.
pubmed: 27791118 pmcid: 5111651 doi: 10.1073/pnas.1609534113
Stiehl-Braun PA, Hartmann AA, Kandeler E, Buchmann N, Niklaus PA. Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob Chang Biol 2011;17:2629–39.
doi: 10.1111/j.1365-2486.2011.02410.x
Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, et al. Microbial minorities modulate methane consumption through niche partitioning. ISME J. 2013;7:2214–28.
pubmed: 23788331 pmcid: 3806271 doi: 10.1038/ismej.2013.99
Karbin S, Hagedorn F, Dawes MA, Niklaus PA. Treeline soil warming does not affect soil methane fluxes and the spatial micro-distribution of methanotrophic bacteria. Soil Biol Biochem. 2015;86:164–71.
doi: 10.1016/j.soilbio.2015.03.022
Stiehl-Braun PA, Powlson DS, Poulton PR, Niklaus PA. Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biol Biochem. 2011;43:1034–41.
doi: 10.1016/j.soilbio.2011.01.020
Menyailo OV, Hungate BA, Abraham WR, Conrad R. Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Chang Biol. 2008;14:2405–19.
doi: 10.1111/j.1365-2486.2008.01648.x
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al. editors. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press; 2013, 465–570.
Täumer J, Kolb S, Boeddinghaus RS, Wang H, Schöning I, Schrumpf M, et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob Chang Biol. 2021;27:929–40.
pubmed: 33135275 doi: 10.1111/gcb.15430
Kolb S. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep. 2009;1:336–46.
pubmed: 23765885 doi: 10.1111/j.1758-2229.2009.00047.x
Kolb S, Horn MA. Microbial CH
pubmed: 22403579 pmcid: 3291872 doi: 10.3389/fmicb.2012.00078
Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun. 2016;7:11728.
pubmed: 27248847 pmcid: 4895445 doi: 10.1038/ncomms11728
Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys. 2018;56:207–50.
doi: 10.1002/2017RG000559
Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D’Amore DV, Keeling PJ, et al. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO
pubmed: 30538276 doi: 10.1038/s41396-018-0334-3
Lombard N, Prestat E, van Elsas JD, Simonet P. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol. 2011;78:31–49.
pubmed: 21631545 doi: 10.1111/j.1574-6941.2011.01140.x
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.
pubmed: 27991881 doi: 10.1038/nmicrobiol.2016.242
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.
pubmed: 23823491 pmcid: 3806256 doi: 10.1038/ismej.2013.102
Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.
pubmed: 21975597 doi: 10.1038/ismej.2011.128
Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, et al. Stable isotope probing with
pubmed: 27035052 doi: 10.1016/j.copbio.2016.03.003
Angel R, Conrad R. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol. 2013;15:2799–815.
pubmed: 23648088
Papp K, Mau RL, Hayer M, Koch BJ, Hungate BA, Schwartz E. Quantitative stable isotope probing with H
pubmed: 30042501 pmcid: 6246559 doi: 10.1038/s41396-018-0233-7
Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527.
pubmed: 18575584 pmcid: 2424134 doi: 10.1371/journal.pone.0002527
Peng J, Wegner CE, Liesack W. Short-term exposure of paddy soil microbial communities to salt stress triggers different transcriptional responses of key taxonomic groups. Front Microbiol. 2017;8:400.
pubmed: 28400748 pmcid: 5368272 doi: 10.3389/fmicb.2017.00400
Peng J, Wegner CE, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome. 2018;6:169.
pubmed: 30231929 pmcid: 6147125 doi: 10.1186/s40168-018-0546-9
Abdallah RZ, Wegner CE, Liesack W. Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem. 2019;132:131–42.
doi: 10.1016/j.soilbio.2019.01.023
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.
pubmed: 29187837 pmcid: 5695134 doi: 10.3389/fmicb.2017.02224
Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J. 2013;7:237–43.
pubmed: 22931831 doi: 10.1038/ismej.2012.94
Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 2011;5:461–72.
pubmed: 20844569 doi: 10.1038/ismej.2010.141
Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, et al. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 2018;3:e00038–18.
pubmed: 30116788 pmcid: 6081794 doi: 10.1128/mSystems.00038-18
Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol. 2010;11:473–85.
doi: 10.1016/j.baae.2010.07.009
IUSS Working Group WRB. World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resour Reports No 106. Rome: FAO; 2015.
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.
doi: 10.1016/0038-0717(87)90052-6
Joergensen RG, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibaration of the k
doi: 10.1016/0038-0717(95)00101-8
Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.
doi: 10.1016/0038-0717(85)90144-0
Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fertil Soils. 2014;50:1189–1200.
doi: 10.1007/s00374-014-0968-x
Koch O, Tscherko D, Kandeler E. Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: Effects of soil temperature, water balance, and plant biomass. Arct Antarct Alp Res. 2007;39:438–48.
doi: 10.1657/1523-0430(06-020)[KOCH]2.0.CO;2
Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol. 2014;80:5761–72.
pubmed: 25015892 pmcid: 4178616 doi: 10.1128/AEM.01030-14
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
pubmed: 21903629 pmcid: 3198573 doi: 10.1093/bioinformatics/btr507
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
pubmed: 21278185 pmcid: 3051327 doi: 10.1093/bioinformatics/btr026
Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
pubmed: 23071270 doi: 10.1093/bioinformatics/bts611
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461
Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, et al. CREST - Classification resources for environmental sequence tags. PLoS One. 2012;7:e49334.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.
pubmed: 27327495 pmcid: 4915700 doi: 10.1371/journal.pcbi.1004957
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
pubmed: 25402007 doi: 10.1038/nmeth.3176
Dumont MG, Lüke C, Deng Y, Frenzel P. Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol. 2014;5:34.
pmcid: 3927136 doi: 10.3389/fmicb.2014.00034
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
Oksanen J, Blanchet f. G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2020. R package version 2.5-7. https://CRAN.R-project.org/package=vegan .
Graves S, Piepho H-P, Selzer L. multcompView: Visualizations of paired comparisons. 2019. R package version 0.1-8. https://CRAN.R-project.org/package=multcompView .
Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 2020;11:1644.
pubmed: 32242055 pmcid: 7118086 doi: 10.1038/s41467-020-15499-z
IPCC Task Force on National Greenhouse Gas Inventories. Methodological guidance on lands with wet and drained soilds, and constructed wetlands for wastewater treatment. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. 2014.
Tiemeyer B, Albiac Borraz E, Augustin J, Bechtold M, Beetz S, Beyer C, et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob Chang Biol. 2016;22:4134–49.
pubmed: 27029402 doi: 10.1111/gcb.13303
Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.
doi: 10.1016/0038-0717(94)00242-S
Knorr W, Prentice IC, House JI, Holland EA. Long-term sensitivity of soil carbon turnover to warming. Nature 2005;433:298–301.
pubmed: 15662420 doi: 10.1038/nature03226
Dutaur L, Verchot LV. A global inventory of the soil CH
doi: 10.1029/2006GB002734
McDaniel MD, Saha D, Dumont MG, Hernández M, Adams MA. The effect of land-use change on soil CH
doi: 10.1007/s10021-019-00347-z
Gulledge J, Schimel JP. Moisture control over atmospheric CH
doi: 10.1016/S0038-0717(97)00209-5
Tveit AT, Urich T, Frenzel P, Svenning MM. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA. 2015;112:E2507–E2516.
pubmed: 25918393 pmcid: 4434766 doi: 10.1073/pnas.1420797112
Conrad R. Methane production in soil environments - anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020;8:881.
pmcid: 7357154 doi: 10.3390/microorganisms8060881
Lyu Z, Lu Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J. 2018;12:411–23.
pubmed: 29135970 doi: 10.1038/ismej.2017.173
Smith KS, Ingram-Smith C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 2007;15:150–5.
pubmed: 17320399 doi: 10.1016/j.tim.2007.02.002
Whitman WB, Bowen TL, Boone DR. The methanogenic bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F editors. The prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer; 2014, pp 123–63.
Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.
doi: 10.1016/S1002-0160(18)60052-9
Söllinger A, Urich T. Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling. Biochem Soc Trans. 2019;47:1895–907.
pubmed: 31819955 doi: 10.1042/BST20180565
Yang S, Liebner S, Winkel M, Alawi M, Horn F, Dörfer C, et al. In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biol Biochem. 2017;111:66–77.
doi: 10.1016/j.soilbio.2017.03.007
Weil M, Wang H, Bengtsson M, Köhn D, Günther A, Jurasinski G, et al. Long-term rewetting of three formerly drained peatlands drives congruent compositional changes in pro- and eukaryotic soil microbiomes through environmental filtering. Microorganisms. 2020;8:550.
pmcid: 7232337 doi: 10.3390/microorganisms8040550
Söllinger A, Seneca J, Dahl MB, Motleleng LL, Prommer J, Verbruggen E, et al. Down-regulation of the microbial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. Sci Adv. 2022;8:eabm3230.
pubmed: 35333567 pmcid: 8956259 doi: 10.1126/sciadv.abm3230
Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs KJ, et al. Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: Kinetic and transcriptional analysis. Environ Microbiol. 2012;14:1024–34.
pubmed: 22221911 doi: 10.1111/j.1462-2920.2011.02682.x
Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci. 2008;105:10203–8.
pubmed: 18632585 pmcid: 2481331 doi: 10.1073/pnas.0702643105
Yimga MT, Dunfield PF, Ricke P, Heyer J, Liesack W. Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol. 2003;69:5593–602.
doi: 10.1128/AEM.69.9.5593-5602.2003
Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA. 2019;116:8515–24.
pubmed: 30962365 pmcid: 6486757 doi: 10.1073/pnas.1817812116
Freitag TE, Toet S, Ineson P, Prosser JI. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol. 2010;73:157–65.
pubmed: 20455935
Qin H, Tang Y, Shen J, Wang C, Chen C, Yang J, et al. Abundance of transcripts of functional gene reflects the inverse relationship between CH
doi: 10.1007/s00374-018-1312-7

Auteurs

Jana Täumer (J)

Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.

Sven Marhan (S)

Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany.

Verena Groß (V)

Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.

Corinna Jensen (C)

Human Molecular Genetics Group, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany.

Andreas W Kuss (AW)

Human Molecular Genetics Group, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany.

Steffen Kolb (S)

RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.
Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany.

Tim Urich (T)

Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany. tim.urich@uni-greifswald.de.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Populus Soil Microbiology Soil Microbiota Fungi
Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH