Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks.
Acetogenic bacteria
C1 feedstocks
Multi-omics
Systems biology
Journal
Advances in biochemical engineering/biotechnology
ISSN: 0724-6145
Titre abrégé: Adv Biochem Eng Biotechnol
Pays: Germany
ID NLM: 8307733
Informations de publication
Date de publication:
2022
2022
Historique:
pubmed:
10
4
2022
medline:
3
6
2022
entrez:
9
4
2022
Statut:
ppublish
Résumé
With a presence of the Wood-Ljungdahl pathway, acetogenic bacteria are capable of converting C1 feedstocks into biomass and various metabolites, receiving industrial interest in microbial production of biochemicals derived from C1 substrates. To understand C1 feedstock fermentation using acetogenic bacteria, most of the studies have focused on revealing their carbon assimilation and energy conservation systems. Despite the determination of the essential mechanisms, a fundamental understanding of acetogenic bacteria and the associated complex regulatory systems remains unclear and is needed for rational strain design. For this purpose, systems biology is a suitable approach for investigating genome, transcription, translation, regulation systems, and metabolic flux, providing a glimpse of the relationship between the genotype and phenotype of the organisms. This chapter will cover recent systems biology applications on acetogenic bacteria and discuss the cellular responses during C1 feedstock fermentation along with the regulatory systems that orchestrate cellular processes.
Substances chimiques
Acetates
0
Carbon Dioxide
142M471B3J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
57-90Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Drake HL, Küsel K, Matthies C (2006) Acetogenic prokaryotes. The prokaryotes: volume 2: ecophysiology and biochemistry. Springer, New York. https://doi.org/10.1007/0-387-30742-7_13
doi: 10.1007/0-387-30742-7_13
Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128. https://doi.org/10.1196/annals.1419.016
doi: 10.1196/annals.1419.016
pubmed: 18378590
Ragsdale SW (1997) The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors 6(1):3–11. https://doi.org/10.1002/biof.5520060102
doi: 10.1002/biof.5520060102
pubmed: 9233535
Schuchmann K, Muller V (2013) Direct and reversible hydrogenation of CO
doi: 10.1126/science.1244758
pubmed: 24337298
Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450. https://doi.org/10.1146/annurev.mi.40.100186.002215
doi: 10.1146/annurev.mi.40.100186.002215
pubmed: 3096193
Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO
doi: 10.1016/j.bbapap.2008.08.012
pubmed: 18801467
pmcid: 2646786
Schuchmann K, Muller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809–821. https://doi.org/10.1038/nrmicro3365
doi: 10.1038/nrmicro3365
pubmed: 25383604
Ragsdale SW (2008) Enzymology of the wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136. https://doi.org/10.1196/annals.1419.015
doi: 10.1196/annals.1419.015
pubmed: 18378591
pmcid: 3040112
Biegel E, Muller V (2010) Bacterial Na
doi: 10.1073/pnas.1010318107
pubmed: 20921383
pmcid: 2964206
Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H
doi: 10.1159/000091557
pubmed: 16645307
Kunkel A, Vorholt JA, Thauer RK, Hedderich R (1998) An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 252(3):467–476. https://doi.org/10.1046/j.1432-1327.1998.2520467.x
doi: 10.1046/j.1432-1327.1998.2520467.x
pubmed: 9546662
Welte C, Kratzer C, Deppenmeier U (2010) Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J 277(16):3396–3403. https://doi.org/10.1111/j.1742-4658.2010.07744.x
doi: 10.1111/j.1742-4658.2010.07744.x
pubmed: 20629748
Ivey DM, Ljungdahl LG (1986) Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J Bacteriol 165(1):252–257. https://doi.org/10.1128/jb.165.1.252-257.1986
doi: 10.1128/jb.165.1.252-257.1986
pubmed: 2867087
pmcid: 214397
Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz O, Brandt K, Muller V, Faraldo-Gomez JD, Meier T (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na
doi: 10.1038/ncomms6286
pubmed: 25381992
Reidlinger J, Muller V (1994) Purification of ATP synthase from Acetobacterium woodii and identification as a Na
doi: 10.1111/j.1432-1033.1994.tb18992.x
pubmed: 8033902
Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na
doi: 10.1016/j.bbabio.2012.07.002
pubmed: 22800682
Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190(3):784–791. https://doi.org/10.1128/JB.01422-07
doi: 10.1128/JB.01422-07
pubmed: 18039764
Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13(12):787–794. https://doi.org/10.1038/nrmicro3565
doi: 10.1038/nrmicro3565
pubmed: 26548914
Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3(9):733–739. https://doi.org/10.1038/nrmicro1236
doi: 10.1038/nrmicro1236
pubmed: 16138101
Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46. https://doi.org/10.1038/nrg2626
doi: 10.1038/nrg2626
pubmed: 19997069
Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512. https://doi.org/10.1126/science.7542800
doi: 10.1126/science.7542800
pubmed: 7542800
Blattner FR, Plunkett 3rd G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462. https://doi.org/10.1126/science.277.5331.1453
doi: 10.1126/science.277.5331.1453
pubmed: 9278503
Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Cordani JJ, Connerton IF, Cummings NJ, Daniel RA, Denziot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O'Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Togoni A, Tosato V, Uchiyama S, Vandebol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256. https://doi.org/10.1038/36786
doi: 10.1038/36786
pubmed: 9384377
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281(5375):375–388. https://doi.org/10.1126/science.281.5375.375
doi: 10.1126/science.281.5375.375
pubmed: 9665876
Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10(10):2550–2573. https://doi.org/10.1111/j.1462-2920.2008.01679.x
doi: 10.1111/j.1462-2920.2008.01679.x
pubmed: 18631365
pmcid: 2575129
Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43(6):701–715. https://doi.org/10.1128/JB.43.6.701-715.1942
doi: 10.1128/JB.43.6.701-715.1942
pubmed: 16560531
pmcid: 373636
Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191(13):4451–4457. https://doi.org/10.1128/JB.01582-08
doi: 10.1128/JB.01582-08
pubmed: 19411328
pmcid: 2698477
Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z, Belaich JP (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177(10):2628–2636. https://doi.org/10.1128/jb.177.10.2628-2636.1995
doi: 10.1128/jb.177.10.2628-2636.1995
pubmed: 7751270
pmcid: 176931
Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658. https://doi.org/10.1146/annurev-micro-090110-102801
doi: 10.1146/annurev-micro-090110-102801
pubmed: 21740227
Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180
doi: 10.1128/br.41.1.100-180.1977
Wang S, Huang H, Kahnt J, Mueller AP, Kopke M, Thauer RK (2013) NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195(19):4373–4386. https://doi.org/10.1128/JB.00678-13
doi: 10.1128/JB.00678-13
pubmed: 23893107
pmcid: 3807470
Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258(3):1826–1832
doi: 10.1016/S0021-9258(18)33062-X
Ljungdahl LG, Andreesen JR (1975) Tungsten, a component of active formate dehydrogenase from Clostridium thermoacetium. FEBS Lett 54(2):279–282. https://doi.org/10.1016/0014-5793(75)80092-5
doi: 10.1016/0014-5793(75)80092-5
pubmed: 1132514
Wood H, Ljungdahl L (1991) Autotrophic character of the acetogenic bacteria, vol 1. Variations in autotrophic life. Academic, San Diego
Hugenholtz J, Ljungdahl LG (1990) Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol Rev 7(3–4):383–389. https://doi.org/10.1111/j.1574-6968.1990.tb04941.x
doi: 10.1111/j.1574-6968.1990.tb04941.x
pubmed: 2094291
Muller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69(11):6345–6353. https://doi.org/10.1128/aem.69.11.6345-6353.2003
doi: 10.1128/aem.69.11.6345-6353.2003
pubmed: 14602585
pmcid: 262307
Biegel E, Schmidt S, Muller V (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11(6):1438–1443. https://doi.org/10.1111/j.1462-2920.2009.01871.x
doi: 10.1111/j.1462-2920.2009.01871.x
pubmed: 19222539
Dangel W, Schulz H, Diekert G, König H, Fuchs G (1987) Occurrence of corrinoid-containing membrane proteins in anaerobic bacteria. Arch Microbiol 148(1):52–56. https://doi.org/10.1007/BF00429647
doi: 10.1007/BF00429647
Schmidt S, Biegel E, Muller V (2009) The ins and outs of Na
doi: 10.1016/j.bbabio.2008.12.015
pubmed: 19167341
Poehlein A, Schmidt S, Kaster AK, Goenrich M, Vollmers J, Thurmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Muller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7(3):e33439. https://doi.org/10.1371/journal.pone.0033439
doi: 10.1371/journal.pone.0033439
pubmed: 22479398
pmcid: 3315566
Wohlfarth G, Diekert G (1991) Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch Microbiol 155(4):378–381. https://doi.org/10.1007/BF00243458
doi: 10.1007/BF00243458
Bertsch J, Muller V (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81(17):5949–5956. https://doi.org/10.1128/AEM.01772-15
doi: 10.1128/AEM.01772-15
pubmed: 26092462
pmcid: 4551271
Verhagen MF, O'Rourke T, Adams MW (1999) The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta 1412(3):212–229. https://doi.org/10.1016/s0005-2728(99)00062-6
doi: 10.1016/s0005-2728(99)00062-6
pubmed: 10482784
Schuchmann K, Muller V (2012) A bacterial electron-bifurcating hydrogenase. J Biol Chem 287(37):31165–31171. https://doi.org/10.1074/jbc.M112.395038
doi: 10.1074/jbc.M112.395038
pubmed: 22810230
pmcid: 3438948
Imkamp F, Biegel E, Jayamani E, Buckel W, Muller V (2007) Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J Bacteriol 189(22):8145–8153. https://doi.org/10.1128/JB.01017-07
doi: 10.1128/JB.01017-07
pubmed: 17873051
pmcid: 2168664
Blaut M, Gottschalk G (1984) Protonmotive force-driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol Lett 24(1):103–107. https://doi.org/10.1111/j.1574-6968.1984.tb01253.x
doi: 10.1111/j.1574-6968.1984.tb01253.x
Westphal L, Wiechmann A, Baker J, Minton NP, Muller V (2018) The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J Bacteriol 200(21). https://doi.org/10.1128/JB.00357-18
Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43(2):232–236. https://doi.org/10.1099/00207713-43-2-232
doi: 10.1099/00207713-43-2-232
pubmed: 7684239
Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107(29):13087–13092. https://doi.org/10.1073/pnas.1004716107
doi: 10.1073/pnas.1004716107
pubmed: 20616070
pmcid: 2919952
Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Durre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036. https://doi.org/10.3389/fmicb.2016.01036
doi: 10.3389/fmicb.2016.01036
pubmed: 27458439
pmcid: 4935695
Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR (2012) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD
doi: 10.1128/mBio.00406-12
Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J (2012) PGAP: pan-genomes analysis pipeline. Bioinformatics 28(3):416–418. https://doi.org/10.1093/bioinformatics/btr655
doi: 10.1093/bioinformatics/btr655
pubmed: 22130594
Shin J, Song Y, Jeong Y, Cho BK (2016) Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria. Front Microbiol 7:1531. https://doi.org/10.3389/fmicb.2016.01531
doi: 10.3389/fmicb.2016.01531
pubmed: 27733845
pmcid: 5039349
O'Brien WE, Brewer JM, Ljungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248(2):403–408
doi: 10.1016/S0021-9258(19)44387-1
Clark JE, Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J Biol Chem 259(17):10845–10849
doi: 10.1016/S0021-9258(18)90590-9
Mock J, Wang S, Huang H, Kahnt J, Thauer RK (2014) Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 196(18):3303–3314. https://doi.org/10.1128/JB.01839-14
doi: 10.1128/JB.01839-14
pubmed: 25002540
pmcid: 4135698
Poehlein A, Cebulla M, Ilg MM, Bengelsdorf FR, Schiel-Bengelsdorf B, Whited G, Andreesen JR, Gottschalk G, Daniel R, Durre P (2015) The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens. MBio 6(5):e01168-01115. https://doi.org/10.1128/mBio.01168-15
doi: 10.1128/mBio.01168-15
Ross DE, Marshall CW, Gulliver D, May HD, Norman RS (2020) Defining genomic and predicted metabolic features of the Acetobacterium genus. mSystems 5(5). https://doi.org/10.1128/mSystems.00277-20
Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20(11):631–656. https://doi.org/10.1038/s41576-019-0150-2
doi: 10.1038/s41576-019-0150-2
pubmed: 31341269
Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484
doi: 10.1038/nrg2484
pubmed: 19015660
pmcid: 2949280
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233
doi: 10.1038/nature11233
pubmed: 22955620
pmcid: 3684276
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476. https://doi.org/10.1038/nature07509
doi: 10.1038/nature07509
pubmed: 18978772
pmcid: 2593745
Creecy JP, Conway T (2015) Quantitative bacterial transcriptomics with RNA-seq. Curr Opin Microbiol 23:133–140. https://doi.org/10.1016/j.mib.2014.11.011
doi: 10.1016/j.mib.2014.11.011
pubmed: 25483350
Tan Y, Liu J, Chen X, Zheng H, Li F (2013) RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically. Mol BioSyst 9(11):2775–2784. https://doi.org/10.1039/c3mb70232d
doi: 10.1039/c3mb70232d
pubmed: 24056499
Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Factories 12:118. https://doi.org/10.1186/1475-2859-12-118
doi: 10.1186/1475-2859-12-118
Aklujkar M, Leang C, Shrestha PM, Shrestha M, Lovley DR (2017) Transcriptomic profiles of clostridium ljungdahlii during lithotrophic growth with syngas or H
doi: 10.1038/s41598-017-12712-w
pubmed: 29030620
pmcid: 5640608
Marcellin E, Behrendorff JB, Nagaraju S, DeTissera S, Segovia S, Palfreyman RW, Daniell J, Licona-Cassani C, Quek LE, Speight R, Hodson MP, Simpson SD, Mitchell WP, Kopke M, Nielsen LK (2016) Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green Chem 18(10):3020–3028. https://doi.org/10.1039/c5gc02708j
doi: 10.1039/c5gc02708j
Song Y, Shin J, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK (2018) Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth. BMC Genomics 19(1):837. https://doi.org/10.1186/s12864-018-5238-0
doi: 10.1186/s12864-018-5238-0
pubmed: 30470174
pmcid: 6260860
Shin J, Song Y, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK (2018) Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. RNA 24(12):1839–1855. https://doi.org/10.1261/rna.068239.118
doi: 10.1261/rna.068239.118
pubmed: 30249742
pmcid: 6239172
Al-Bassam MM, Kim JN, Zaramela LS, Kellman BP, Zuniga C, Wozniak JM, Gonzalez DJ, Zengler K (2018) Optimization of carbon and energy utilization through differential translational efficiency. Nat Commun 9(1):4474. https://doi.org/10.1038/s41467-018-06993-6
doi: 10.1038/s41467-018-06993-6
pubmed: 30367068
pmcid: 6203783
Song Y, Shin J, Jeong Y, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK (2017) Determination of the genome and primary transcriptome of syngas fermenting Eubacterium limosum ATCC 8486. Sci Rep 7(1):13694. https://doi.org/10.1038/s41598-017-14123-3
doi: 10.1038/s41598-017-14123-3
pubmed: 29057933
pmcid: 5651825
Jeong J, Bertsch J, Hess V, Choi S, Choi IG, Chang IS, Muller V (2015) Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612. Appl Environ Microbiol 81(14):4782–4790. https://doi.org/10.1128/AEM.00675-15
doi: 10.1128/AEM.00675-15
pubmed: 25956767
pmcid: 4551209
Graham R, Graham C, McMullan G (2007) Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Factories 6(1):26. https://doi.org/10.1186/1475-2859-6-26
doi: 10.1186/1475-2859-6-26
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978
doi: 10.1126/science.1168978
pubmed: 19213877
pmcid: 2746483
Kaberdin VR, Blasi U (2006) Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 30(6):967–979. https://doi.org/10.1111/j.1574-6976.2006.00043.x
doi: 10.1111/j.1574-6976.2006.00043.x
pubmed: 16989654
Subramanian AR (1983) Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol 28:101–142. https://doi.org/10.1016/s0079-6603(08)60085-9
doi: 10.1016/s0079-6603(08)60085-9
pubmed: 6348874
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255. https://doi.org/10.1038/nature08756
doi: 10.1038/nature08756
pubmed: 20164839
Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105. https://doi.org/10.1016/j.mib.2014.06.010
doi: 10.1016/j.mib.2014.06.010
pubmed: 25024085
Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121. https://doi.org/10.1038/nprot.2009.203
doi: 10.1038/nprot.2009.203
pubmed: 20057383
pmcid: 3125167
Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897. https://doi.org/10.1038/nrmicro1023
doi: 10.1038/nrmicro1023
pubmed: 15494745
Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305. https://doi.org/10.1038/nrmicro2737
doi: 10.1038/nrmicro2737
pubmed: 22367118
pmcid: 3536058
Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349. https://doi.org/10.1016/j.mib.2010.03.003
doi: 10.1016/j.mib.2010.03.003
pubmed: 20430689
pmcid: 2912156
Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol 7:74. https://doi.org/10.1186/1752-0509-7-74
doi: 10.1186/1752-0509-7-74
pubmed: 23927696
pmcid: 3751080
Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdottir HS, Wachowiak J, Keating SM, Vlasov V, Magnusdottir S, Ng CY, Preciat G, Zagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Valcarcel LV, Apaolaza I, Ghaderi S, Ahookhosh M, Ben Guebila M, Kostromins A, Sompairac N, Le HM, Ma D, Sun Y, Wang L, Yurkovich JT, Oliveira MAP, Vuong PT, El Assal LP, Kuperstein I, Zinovyev A, Hinton HS, Bryant WA, Aragon Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M, Saunders MA, Maranas CD, Lewis NE, Sauter T, Palsson BO, Thiele I, Fleming RMT (2019) Creation and analysis of biochemical constraint-based models using the COBRA toolbox v.3.0. Nat Protoc 14(3):639–702. https://doi.org/10.1038/s41596-018-0098-2
doi: 10.1038/s41596-018-0098-2
pubmed: 30787451
pmcid: 6635304
Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25):17410–17416. https://doi.org/10.1074/jbc.274.25.17410
doi: 10.1074/jbc.274.25.17410
pubmed: 10364169
Fang X, Lloyd CJ, Palsson BO (2020) Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00440-4
Guan N, Du B, Li J, Shin HD, Chen RR, Du G, Chen J, Liu L (2018) Comparative genomics and transcriptomics analysis-guided metabolic engineering of Propionibacterium acidipropionici for improved propionic acid production. Biotechnol Bioeng 115(2):483–494. https://doi.org/10.1002/bit.26478
doi: 10.1002/bit.26478
pubmed: 29064557
Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, Martinez VS, Kyriakopoulos S, Jimenez NE, Zielinski DC, Quek LE, Wulff T, Arnsdorf J, Li S, Lee JS, Paglia G, Loira N, Spahn PN, Pedersen LE, Gutierrez JM, King ZA, Lund AM, Nagarajan H, Thomas A, Abdel-Haleem AM, Zanghellini J, Kildegaard HF, Voldborg BG, Gerdtzen ZP, Betenbaugh MJ, Palsson BO, Andersen MR, Nielsen LK, Borth N, Lee DY, Lewis NE (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3(5):434–443.e438. https://doi.org/10.1016/j.cels.2016.10.020
doi: 10.1016/j.cels.2016.10.020
pubmed: 27883890
pmcid: 5132346
Cardoso JG, Andersen MR, Herrgard MJ, Sonnenschein N (2015) Analysis of genetic variation and potential applications in genome-scale metabolic modeling. Front Bioeng Biotechnol 3:13. https://doi.org/10.3389/fbioe.2015.00013
doi: 10.3389/fbioe.2015.00013
pubmed: 25763369
pmcid: 4329917
McAnulty MJ, Yen JY, Freedman BG, Senger RS (2012) Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 6:42. https://doi.org/10.1186/1752-0509-6-42
doi: 10.1186/1752-0509-6-42
pubmed: 22583864
pmcid: 3495714
Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. https://doi.org/10.1002/bit.10803
doi: 10.1002/bit.10803
pubmed: 14595777
Kumar M, Ji B, Zengler K, Nielsen J (2019) Modelling approaches for studying the microbiome. Nat Microbiol 4(8):1253–1267. https://doi.org/10.1038/s41564-019-0491-9
doi: 10.1038/s41564-019-0491-9
pubmed: 31337891
Guzman GI, Utrilla J, Nurk S, Brunk E, Monk JM, Ebrahim A, Palsson BO, Feist AM (2015) Model-driven discovery of underground metabolic functions in Escherichia coli. Proc Natl Acad Sci U S A 112(3):929–934. https://doi.org/10.1073/pnas.1414218112
doi: 10.1073/pnas.1414218112
pubmed: 25564669
pmcid: 4311852
Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2):e1002363. https://doi.org/10.1371/journal.pcbi.1002363
doi: 10.1371/journal.pcbi.1002363
pubmed: 22319433
pmcid: 3271020
Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501. https://doi.org/10.1038/msb.2011.35
doi: 10.1038/msb.2011.35
pubmed: 21694718
pmcid: 3159974
Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92. https://doi.org/10.1038/msb4100131
doi: 10.1038/msb4100131
pubmed: 17353934
pmcid: 1847946
Islam MA, Zengler K, Edwards EA, Mahadevan R, Stephanopoulos G (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr Biol (Camb) 7(8):869–882. https://doi.org/10.1039/c5ib00095e
doi: 10.1039/c5ib00095e
Song Y, Lee JS, Shin J, Lee GM, Jin S, Kang S, Lee JK, Kim DR, Lee EY, Kim SC, Cho S, Kim D, Cho BK (2020) Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. Proc Natl Acad Sci U S A 117(13):7516–7523. https://doi.org/10.1073/pnas.1912289117
doi: 10.1073/pnas.1912289117
pubmed: 32170009
pmcid: 7132306
Liu JK, Lloyd C, Al-Bassam MM, Ebrahim A, Kim JN, Olson C, Aksenov A, Dorrestein P, Zengler K (2019) Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLoS Comput Biol 15(3):e1006848. https://doi.org/10.1371/journal.pcbi.1006848
doi: 10.1371/journal.pcbi.1006848
pubmed: 30845144
pmcid: 6430413
de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Kopke M, Marcellin E (2019) Systems-level engineering and characterisation of clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng 53:14–23. https://doi.org/10.1016/j.ymben.2019.01.003
doi: 10.1016/j.ymben.2019.01.003
pubmed: 30641139
Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf FR, Durre P, Takors R (2021) Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis. Front Bioeng Biotechnol 9:647853. https://doi.org/10.3389/fbioe.2021.647853
doi: 10.3389/fbioe.2021.647853
pubmed: 33748092
pmcid: 7968104
Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Kopke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211. https://doi.org/10.1016/j.ymben.2017.04.007
doi: 10.1016/j.ymben.2017.04.007
pubmed: 28442386