Molecular Insights into Lipoxygenases in Diatoms Based on Structure Prediction: a Pioneering Study on Lipoxygenases Found in Pseudo-nitzschia arenysensis and Fragilariopsis cylindrus.
AlphaFold
Diatom
Lipoxygenase
Oxylipin
Structure prediction
Journal
Marine biotechnology (New York, N.Y.)
ISSN: 1436-2236
Titre abrégé: Mar Biotechnol (NY)
Pays: United States
ID NLM: 100892712
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
27
12
2021
accepted:
20
03
2022
pubmed:
10
4
2022
medline:
29
6
2022
entrez:
9
4
2022
Statut:
ppublish
Résumé
Diatoms produce a variety of oxylipins which are oxygenated polyunsaturated fatty acids and are involved in chemical defense and intercellular communication, among other roles. Although the chemistry of diatom oxylipins has long been studied, the enzymes involved in their production, in particular lipoxygenase (LOX), which catalyzes the initial reaction of the synthesis, have not been discovered in diatom genomes. Recently, diatom LOXs were found in two species, Pseudo-nitzschia arenysensis (PaLOX) and Fragilariopsis cylindrus (FcLOX); however, the enzymology of these LOXs is largely unknown. In this review article, we discuss the potential functions of the diatom LOXs based on previously reported structures of LOXs derived from various organisms other than diatoms. Since the structures of PaLOX and FcLOX have not yet been solved, we discussed their functions, such as regio- and stereospecificities, on the basis of their structures predicted using a computational tool based on deep learning technology. Both diatom LOXs were predicted to conserve common core domains with relatively wide substrate-binding pockets. The stereo-determinant residues in PaLOX and FcLOX suggest S specificity. We assume that the highly conserved common core domain can be a clue to reveal unidentified lox genes from the accumulated diatom genome information with the aid of high-throughput structure prediction tools and structure-based alignment tools in the near future.
Identifiants
pubmed: 35397048
doi: 10.1007/s10126-022-10120-4
pii: 10.1007/s10126-022-10120-4
doi:
Substances chimiques
Fatty Acids, Unsaturated
0
Oxylipins
0
Lipoxygenases
EC 1.13.11.-
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
468-479Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
An JU, Kim SE, Oh DK (2021) Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Prog Lipid Res 83:101110
doi: 10.1016/j.plipres.2021.101110
pubmed: 34144023
Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170
doi: 10.1016/j.plipres.2009.02.002
pubmed: 19268690
Arapov J, Buzancic M, Penna A, Casabianca S, Capellacci S, Andreoni F, Skejic S, Bakrac A, Straka M, Mandic JJ (2020) High proliferation of Pseudo-nitzschia cf. arenysensis in the Adriatic Sea: ecological and morphological characterisation. Mediterr Mar Sci 21:759–774
doi: 10.12681/mms.22932
Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192
doi: 10.1038/nature08057
pubmed: 19444204
Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86
doi: 10.1126/science.1101156
pubmed: 15459382
Basu S, Patil S, Mapleson D, Russo MT, Vitale L, Fevola C, Maumus F, Casotti R, Mock T, Caccamo M (2017) Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytol 215:140–156
doi: 10.1111/nph.14557
Borngräber S, Browner M, Gillmor S, Gerth C, Anton M, Fletterick R, Kühn H (1999) Shape and specificity in mammalian 15-lipoxygenase active site. The functional interplay of sequence determinants for the reaction specificity. J Biol Chem 274:37345–37350
doi: 10.1074/jbc.274.52.37345
pubmed: 10601303
Borngräber S, Kuban RJ, Anton M, Kühn H (1996) Phenylalanine 353 is a primary determinant for the positional specificity of mammalian 15-lipoxygenases. J Mol Biol 264:1145–1153
doi: 10.1006/jmbi.1996.0702
pubmed: 9000636
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, Mcginnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, Von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van De Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244
doi: 10.1038/nature07410
pubmed: 18923393
Butler T, Kapoore RV, Vaidyanathan S (2020) Phaeodactylum tricornutum: a diatom cell factory. Trends Biotechnol 38:606–622
doi: 10.1016/j.tibtech.2019.12.023
pubmed: 31980300
Coffa G, Brash AR (2004) A single active site residue directs oxygenation stereospecificity in lipoxygenases: stereocontrol is linked to the position of oxygenation. Proc Natl Acad Sci U S A 101:15579–15584
doi: 10.1073/pnas.0406727101
pubmed: 15496467
pmcid: 524819
Coffa G, Schneider C, Brash AR (2005) A comprehensive model of positional and stereo control in lipoxygenases. Biochem Biophys Res Commun 338:87–92
doi: 10.1016/j.bbrc.2005.07.185
pubmed: 16111652
Cutignano A, Lamari N, D’ippolito, G., Manzo, E., Cimino, G. & Fontana, A. (2011) Lipoxygenase products in marine diatoms: a concise analytical method to explore the functional potential of oxylipins. J Phycol 47:233–243
doi: 10.1111/j.1529-8817.2011.00972.x
pubmed: 27021855
D’ippolito G, Lamari N, Montresor M, Romano G, Cutignano A, Gerecht A, Cimino G, Fontana A (2009) 15S-lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. The New Phytol 183:1064–1071
doi: 10.1111/j.1469-8137.2009.02887.x
D’ippolito G, Nuzzo G, Sardo A, Manzo E, Gallo C, Fontana A (2018) Lipoxygenases and lipoxygenase products in marine diatoms. Methods Enzymol 605:69–100
doi: 10.1016/bs.mie.2018.02.021
Falkowski PG, Barber RT, Smetacek VV (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–207
doi: 10.1126/science.281.5374.200
Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378
doi: 10.1016/s1369-5266(03)00045-1
pubmed: 12873533
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240
doi: 10.1126/science.281.5374.237
Filloramo GV, Curtis BA, Blanche E, Archibald JM (2021) Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics 22:379
doi: 10.1186/s12864-021-07666-3
pubmed: 34030633
pmcid: 8147415
Fontana A, D’ippolito G, Cutignano A, Miralto A, Ianora A, Romano G, Cimino G (2007) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:481–490
doi: 10.1351/pac200779040481
Galachyants YP, Zakharova YR, Petrova DP, Morozov AA, Sidorov IA, Marchenkov AM, Logacheva MD, Markelov ML, Khabudaev KV, Likhoshway YV, Grachev MA (2015) Sequencing of the complete genome of an araphid pennate diatom Synedra acus subsp. radians from Lake Baikal. Dokl Biochem Biophys 461:84–88
doi: 10.1134/s1607672915020064
pubmed: 25937221
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528
doi: 10.1111/tpj.12734
pubmed: 25438865
pmcid: 4329603
Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9
doi: 10.1016/j.ymben.2013.12.003
pubmed: 24333273
pmcid: 3985434
Hansen J, Garreta A, Benincasa M, Fusté MC, Busquets M, Manresa A (2013) Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol 97:4737–4747
doi: 10.1007/s00253-013-4887-9
pubmed: 23624657
Hildebrand A, Remmert M, Biegert A, Söding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77:128–132
doi: 10.1002/prot.22499
pubmed: 19626712
Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379
doi: 10.1093/bioinformatics/14.4.378
Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’donnell VB, Kuhn H, Walther M (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503:161–174
doi: 10.1016/j.abb.2010.08.016
pubmed: 20801095
JGI D. 100 Diatom Genomes (URL: https://jgi.doe.gov/csp-2021-100-diatom-genomes/ ).
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583-9. https://doi.org/10.1038/s41586-021-03819-2
doi: 10.1038/s41586-021-03819-2
pubmed: 34265844
pmcid: 8371605
Kashiyama Y, Ishizuka Y, Terauchi I, Matsuda T, Maeda Y, Yoshino T, Matsumoto M, Yabuki A, Bowler C, Tanaka T (2021) Engineered chlorophyll catabolism conferring predator resistance for microalgal biomass production. Metab Eng 66:79–86
doi: 10.1016/j.ymben.2021.03.018
pubmed: 33862197
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, Mcmanus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G, Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB, Schroeder DC, Simpson AG, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL, Wilson WH, Xu Y, Zingone A, Worden AZ (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889. https://doi.org/10.1371/journal.pbio.1001889
doi: 10.1371/journal.pbio.1001889
pubmed: 24959919
pmcid: 4068987
Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183
doi: 10.1111/j.1365-313X.2004.02294.x
pubmed: 15634195
Kuhn H, Banthiya S, Van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330
doi: 10.1016/j.bbalip.2014.10.002
pubmed: 25316652
Kumazawa M, Nishide H, Nagao R, Inoue-Kashino N, Shen JR, Nakano T, Uchiyama I, Kashino Y, Ifuku K (2021) Molecular phylogeny of fucoxanthin-chlorophyll a/c proteins from Chaetoceros gracilis and Lhcq/Lhcf diversity. Physiol Plant e13598 https://doi.org/10.1111/ppl.13598
Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100
doi: 10.1093/bioinformatics/bty191
Lupette J, Jaussaud A, Vigor C, Oger C, Galano JM, Réversat G, Vercauteren J, Jouhet J, Durand T, Maréchal E (2018) Non-enzymatic synthesis of bioactive isoprostanoids in the diatom Phaeodactylum following oxidative stress. Plant Physiol 178:1344–1357
doi: 10.1104/pp.18.00925
pubmed: 30237205
pmcid: 6236624
Maeda Y, Nojima D, Yoshino T, Tanaka T (2017) Structure and properties of oil bodies in diatoms. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0408
doi: 10.1098/rstb.2016.0408
pubmed: 29061901
pmcid: 5665816
Maeda Y, Tsuru Y, Matsumoto N, Nonoyama T, Yoshino T, Matsumoto M, Tanaka T (2021a) Prostaglandin production by the microalga with heterologous expression of cyclooxygenase. Biotechnol Bioeng 118:2734–2743
doi: 10.1002/bit.27792
pubmed: 33851720
Maeda Y, Watanabe K, Kobayashi R, Yoshino T, Bowler C, Matsumoto M, Tanaka T (2021b) Chromosome scale assembly of allopolyploid genome of the diatom Fistulifera solaris. bioRxiv https://doi.org/10.1101/2021b.11.10.468027
Matsumoto M, Nojima D, Nonoyama T, Ikeda K, Maeda Y, Yoshino T, Tanaka T (2017) Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar Drugs. https://doi.org/10.3390/md15040094
doi: 10.3390/md15040094
pubmed: 28714912
pmcid: 5532667
Mcclure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res 29:41–48
doi: 10.1016/j.algal.2017.11.015
Miralto A, Barone G, Romano G, Poulet S, Ianora A, Russo G, Buttino I, Mazzarella G, Laabir M, Cabrini M (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176
doi: 10.1038/46023
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2021) ColabFold-Making protein folding accessible to all. InReview. https://doi.org/10.21203/rs.3.rs-1032816/v1
doi: 10.21203/rs.3.rs-1032816/v1
Mock T, Otillar RP, Strauss J, Mcmullan M, Paajanen P, Schmutz J, Salamov A, Sanges R, Toseland A, Ward BJ, Allen AE, Dupont CL, Frickenhaus S, Maumus F, Veluchamy A, Wu T, Barry KW, Falciatore A, Ferrante MI, Fortunato AE, Glöckner G, Gruber A, Hipkin R, Janech MG, Kroth PG, Leese F, Lindquist EA, Lyon BR, Martin J, Mayer C, Parker M, Quesneville H, Raymond JA, Uhlig C, Valas RE, Valentin KU, Worden AZ, Armbrust EV, Clark MD, Bowler C, Green BR, Moulton V, Van Oosterhout C, Grigoriev IV (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540
doi: 10.1038/nature20803
pubmed: 28092920
Neau DB, Bender G, Boeglin WE, Bartlett SG, Brash AR, Newcomer ME (2014) Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase. J Biol Chem 289:31905–31913
doi: 10.1074/jbc.M114.599662
pubmed: 25231982
pmcid: 4231669
Neau DB, Gilbert NC, Bartlett SG, Boeglin W, Brash AR, Newcomer ME (2009) The 1.85 A structure of an 8R-lipoxygenase suggests a general model for lipoxygenase product specificity. Biochemistry 48:7906–7915
doi: 10.1021/bi900084m
pubmed: 19594169
Newcomer ME, Brash AR (2015) The structural basis for specificity in lipoxygenase catalysis. Protein Sci 24:298–309
doi: 10.1002/pro.2626
pubmed: 25524168
pmcid: 4353356
Nomaguchi T, Maeda Y, Yoshino T, Asahi T, Tirichine L, Bowler C, Tanaka T (2018) Homoeolog expression bias in allopolyploid oleaginous marine diatom Fistulifera solaris. BMC Genomics 19:330
doi: 10.1186/s12864-018-4691-0
pubmed: 29728068
pmcid: 5935921
Pereira H, Sá M, Maia I, Rodrigues A, Teles I, Wijffels RH, Navalho J, Barbosa M (2021) Fucoxanthin production from Tisochrysis lutea and Phaeodactylum tricornutum at industrial scale. Algal Res 56:102322
Ruocco N, Albarano L, Esposito R, Zupo V, Costantini M, Ianora A (2020) Multiple roles of diatom-derived oxylipins within marine environments and their potential biotechnological applications. Mar Drugs. https://doi.org/10.3390/md18070342
doi: 10.3390/md18070342
pubmed: 32629777
pmcid: 7401250
Russo E, D’ippolito G, Fontana A, Sarno D, D’alelio D, Busseni G, Ianora A, Von Elert E, Carotenuto Y (2020) Density-dependent oxylipin production in natural diatom communities: possible implications for plankton dynamics. ISME J 14:164–177
doi: 10.1038/s41396-019-0518-5
pubmed: 31611654
Sabatino V, Orefice I, Marotta P, Ambrosino L, Chiusano ML, D’ippolito G, Romano G, Fontana A, Ferrante MI (2021) Silencing of a Pseudo-nitzschia arenysensis lipoxygenase transcript leads to reduced oxylipin production and impaired growth. New Phytol 233:809–822
doi: 10.1111/nph.17739
pubmed: 34533849
Sato S, Nanjappa D, Dorrell RG, Vieira FRJ, Kazamia E, Tirichine L, Veluchamy A, Heilig R, Aury JM, Jaillon O, Wincker P, Fussy Z, Obornik M, Muñoz-Gómez SA, Mann DG, Bowler C, Zingone A (2020) Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci Rep 10:9449
Tanaka T, Maeda Y, Veluchamy A, Tanaka M, Abida H, Maréchal E, Bowler C, Muto M, Sunaga Y, Tanaka M, Yoshino T, Taniguchi T, Fukuda Y, Nemoto M, Matsumoto M, Wong PS, Aburatani S, Fujibuchi W (2015) Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 27:162–176
doi: 10.1105/tpc.114.135194
pubmed: 25634988
pmcid: 4330590
Tanaka T, Yabuuchi T, Maeda Y, Nojima D, Matsumoto M, Yoshino T (2017) Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. Bioresour Technol 245:567–572
doi: 10.1016/j.biortech.2017.09.005
pubmed: 28898857
Teng L, Han W, Fan X, Xu D, Zhang X, Dittami SM, Ye N (2017) Evolution and expansion of the prokaryote-like lipoxygenase family in the brown alga Saccharina japonica. Front Plant Sci 8:2018. https://doi.org/10.3389/fpls.2017.02018
doi: 10.3389/fpls.2017.02018
pubmed: 29234336
pmcid: 5712309
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D (2021) Highly accurate protein structure prediction for the human proteome. Nature 596:590–596
doi: 10.1038/s41586-021-03828-1
pubmed: 34293799
pmcid: 8387240
Ul Hassan MN, Zainal Z, Ismail I (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J 13:727–739
doi: 10.1111/pbi.12368
pubmed: 25865366
Vogel R, Jansen C, Roffeis J, Reddanna P, Forsell P, Claesson HE, Kuhn H, Walther M (2010) Applicability of the triad concept for the positional specificity of mammalian lipoxygenases. J Biol Chem 285:5369–5376.
doi: 10.1074/jbc.M109.057802
pubmed: 20026599
Zdobnov EM, Apweiler R (2001) InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848
doi: 10.1093/bioinformatics/17.9.847