Transcriptome Analysis of Chinese Cabbage Infected with Plasmodiophora Brassicae in the Primary Stage.
Plasmodiophorida
/ physiology
Plant Diseases
/ parasitology
Gene Expression Regulation, Plant
Gene Expression Profiling
Brassica
/ parasitology
Disease Resistance
/ genetics
Transcriptome
Salicylic Acid
/ metabolism
Oxylipins
/ metabolism
Cyclopentanes
/ metabolism
Plant Roots
/ parasitology
Brassica rapa
/ parasitology
Plant Proteins
/ genetics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
03
02
2024
accepted:
15
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Clubroot disease caused by the infection of Plasmodiophora brassicae is widespread in China, and significantly reduces the yield of Chinese cabbage (Brassica rapa L. ssp. pekinensis). However, the resistance mechanism of Chinese cabbage against clubroot disease is still unclear. It is important to exploit the key genes that response to early infection of P. brassicae. In this study, it was found that zoospores were firstly invaded hair roots on the 8th day after inoculating with 1 × 10
Identifiants
pubmed: 39477989
doi: 10.1038/s41598-024-76634-0
pii: 10.1038/s41598-024-76634-0
doi:
Substances chimiques
Salicylic Acid
O414PZ4LPZ
jasmonic acid
6RI5N05OWW
Oxylipins
0
Cyclopentanes
0
Plant Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26180Subventions
Organisme : the National Natural Science Foundation of China
ID : 31972412; 32272717
Organisme : the Shenyang Science and Technology Bureau
ID : 22-319-2-05
Informations de copyright
© 2024. The Author(s).
Références
Chen, J., Piao, Y., Liu, Y., Li, X. & Piao, Z. Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. Plant Sci.270, 257–267. https://doi.org/10.1016/j.plantsci.2018.02.017 (2018).
doi: 10.1016/j.plantsci.2018.02.017
pubmed: 29576079
Bhering, A. D. S., Carmo, Matos, M. G. F. & Lima, T. S. A. & do Amaral Sobrinho, N. M. B. Soil factors related to the severity of clubroot in Rio De Janeiro, Brazil. Plant Dis.101, 1345–1353. https://doi.org/10.1094/pdis-07-16-1024-sr (2017).
doi: 10.1094/pdis-07-16-1024-sr
pubmed: 30678583
Galindo-González, L., Manolii, V., Hwang, S. F. & Strelkov, S. E. Response of Brassica napus to Plasmodiophora brassicae involves salicylic acid-mediated immunity: An RNA-Seq-based study. Front. Plant Sci.11, 1025. https://doi.org/10.3389/fpls.2020.01025 (2020).
doi: 10.3389/fpls.2020.01025
pubmed: 32754180
pmcid: 7367028
Ingram, D. S. & Tommerup, I. C. The life history of Plasmodiophora brassicae Woron. Proc. R. Soc. Lond. 180, 103–112, doi: (1997). https://doi.org/10.1098/rspb.1972.0008
Naiki, T. & Dixon, G. R. The effects of chemicals on developmental stages of Plasmodiophora brassicae (clubroot). Plant Pathol.36, 316–327. https://doi.org/10.1111/j.1365-3059.1987.tb02238.x (2007).
doi: 10.1111/j.1365-3059.1987.tb02238.x
Kageyama, K. & Asano, T. Life cycle of Plasmodiophora brassicae. J. Plant Growth Regul.28, 203–211. https://doi.org/10.1007/s00344-009-9101-z (2009).
doi: 10.1007/s00344-009-9101-z
Hwang, S. F., Howard, R. J., Strelkov, S. E., Gossen, B. D. & Peng, G. Management of clubroot (Plasmodiophora brassicae) on canola (Brassica napus) in western Canada. Can. J. Plant Pathol.36, 49–65 (2014).
doi: 10.1080/07060661.2013.863806
Yuan, Y. et al. Transcriptome and coexpression network analyses reveal hub genes in Chinese Cabbage (Brassica rapa L. ssp. pekinensis) during different stages of Plasmodiophora brassicae infection. Front. Plant Sci.12, 650252. https://doi.org/10.3389/fpls.2021.650252 (2021).
doi: 10.3389/fpls.2021.650252
pubmed: 34447397
pmcid: 8383047
Feng, J., Xiao, Q., Hwang, S. F., Strelkov, S. E. & Gossen, B. D. Infection of canola by secondary zoospores of Plasmodiophora brassicae produced on a nonhost. Eur. J. Plant Pathol.132, 309–315. https://doi.org/10.1007/s10658-011-9875-2 (2012).
doi: 10.1007/s10658-011-9875-2
Buczacki, S. et al. Study of physiologic specialization in Plasmodiophora brassicae: Proposals for attempted rationalization through an international approach. Trans. Br. Mycol. soc.65, 295–303 (1975).
doi: 10.1016/S0007-1536(75)80013-1
Lv, M. et al. An improved technique for isolation and characterization of single-spore isolates of Plasmodiophora brassicae. Plant Dis.105, 3932–3938. https://doi.org/10.1094/pdis-03-21-0480-re (2021).
doi: 10.1094/pdis-03-21-0480-re
pubmed: 34455802
Xue, S., Cao, T., Howard, R. J., Hwang, S. F. & Strelkov, S. E. Isolation and variation in virulence of single-spore Isolatesof Plasmodiophora brassicae from Canada. Plant Dis.92, 456–462. https://doi.org/10.1094/PDIS-92-3-0456 (2008).
doi: 10.1094/PDIS-92-3-0456
pubmed: 30769685
Li, L. et al. A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica napus. Front. Plant Sci.7, 1483. https://doi.org/10.3389/fpls.2016.01483 (2016).
doi: 10.3389/fpls.2016.01483
pubmed: 27746804
pmcid: 5044777
Cao, T. et al. Effect of canola (Brassica napus) cultivar rotation on Plasmodiophora brassicae pathotype composition. Can. J. Plant Sci.100, 218–225. https://doi.org/10.1139/cjps-2019-0126 (2019).
doi: 10.1139/cjps-2019-0126
Han, X. et al. Plasmodiophora brassicae in Yunnan and its resistant sources in Chinese cabbage. Int. J. Agric. Biol.25, 805–812. https://doi.org/10.17957/IJAB/15.1732 (2021).
doi: 10.17957/IJAB/15.1732
Luo, H., Chen, G., Liu, C., Huang, Y. & Xiao, C. An improved culture solution technique for Plasmodiophora brassicae infection and the dynamic infection in the root hair. Australas. Plant Pathol.43, 53–60. https://doi.org/10.1007/s13313-013-0240-0 (2014).
doi: 10.1007/s13313-013-0240-0
Arif, S. et al. Exogenous inoculation of endophytic bacterium Bacillus cereus suppresses clubroot (Plasmodiophora brassicae) occurrence in pak choi (Brassicacampestris sp. chinensis L). Planta. 253, 25. https://doi.org/10.1007/s00425-020-03546-4 (2021).
doi: 10.1007/s00425-020-03546-4
pubmed: 33404767
Li, J., Huang, T., Lu, J., Xu, X. & Zhang, W. Metabonomic profiling of clubroot-susceptible and clubroot-resistant radish and the assessment of disease-resistant metabolites. Front. Plant Sci.13, 1037633. https://doi.org/10.3389/fpls.2022.1037633 (2022).
doi: 10.3389/fpls.2022.1037633
pubmed: 36570889
pmcid: 9772615
Rolfe, S. A. et al. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassicaspp. BMC Genom.17 https://doi.org/10.1186/s12864-016-2597-2 (2016).
Vlot, A. C. et al. Systemic propagation of immunity in plants. New Phytol.229, 1234–1250. https://doi.org/10.1111/nph.16953 (2021).
doi: 10.1111/nph.16953
pubmed: 32978988
Romera, F. J. et al. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front. Plant. Sci.10, 287. https://doi.org/10.3389/fpls.2019.00287 (2019).
doi: 10.3389/fpls.2019.00287
pubmed: 30915094
pmcid: 6421314
Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol.43, 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923 (2005).
doi: 10.1146/annurev.phyto.43.040204.135923
pubmed: 16078883
Yang, Y. X., Ahammed, G. J., Wu, C., Fan, S. Y. & Zhou, Y. H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr. Protein Pept. Sci.16, 450–461. https://doi.org/10.2174/1389203716666150330141638 (2015).
doi: 10.2174/1389203716666150330141638
pubmed: 25824390
Leon Reyes, A. et al. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta232, 1423–1432. https://doi.org/10.1007/s00425-010-1265-z (2010).
doi: 10.1007/s00425-010-1265-z
pubmed: 20839007
pmcid: 2957573
Y, W., H, H. K. & S, M. & Effects of salinity on endogenous ABA, IAA, JA, AND SA in Iris hexagona. J. Chem. Ecol.27, 327–342 (2001).
doi: 10.1023/A:1005632506230
Plieth, C. & Vollbehr, S. Calcium promotes activity and confers heat stability on plant peroxidases. Plant Signal. Behav.7, 650–660. https://doi.org/10.4161/psb.20065 (2012).
doi: 10.4161/psb.20065
pubmed: 22580695
pmcid: 3442860
Zhao, Y. et al. Transcriptome analysis of Arabidopsis thaliana in response to Plasmodiophora brassicae during early infection. Front. Microbiol.8, 673. https://doi.org/10.3389/fmicb.2017.00673 (2017).
doi: 10.3389/fmicb.2017.00673
pubmed: 28484434
pmcid: 5401899
Jia, H. et al. Root RNA-seq analysis reveals a distinct transcriptome landscape between clubroot-susceptible and clubroot-resistant Chinese cabbage lines after Plasmodiophora brassicae infection. Plant Soil.421, 93–105. https://doi.org/10.1007/s11104-017-3432-5 (2017).
doi: 10.1007/s11104-017-3432-5
Zhang, X. et al. Comparative transcriptome analysis between Broccoli (Brassica oleracea var. italica) and wild cabbage (Brassica Macrocarpa Guss.) In response to Plasmodiophora brassicae during different infection stages. Front. Plant. Sci.7, 1929. https://doi.org/10.3389/fpls.2016.01929 (2016).
doi: 10.3389/fpls.2016.01929
pubmed: 28066482
pmcid: 5179516
Li, L., Long, Y., Li, H. & Wu, X. Comparative transcriptome analysis reveals key pathways and hub genes in rapeseed during the early stage of Plasmodiophora brassicae infection. Front. Genet.10, 1275. https://doi.org/10.3389/fgene.2019.01275 (2019).
doi: 10.3389/fgene.2019.01275
pubmed: 32010176
Gene Ontology Consortium: going forward. Nucleic Acids Res.43, D1049–1056. https://doi.org/10.1093/nar/gku1179 (2015).
Masoudi-Nejad, A., Goto, S., Endo, T. R. & Kanehisa, M. KEGG bioinformatics resource for plant genomics research. Methods Mol. Biol.406, 437–458. https://doi.org/10.1007/978-1-59745-535-0_21 (2007).
doi: 10.1007/978-1-59745-535-0_21
pubmed: 18287706
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
doi: 10.1006/meth.2001.1262
pubmed: 11846609
Ji, R. et al. Infection of Plasmodiophora brassicae in Chinese cabbage. Genet. Mol. Res.13, 10976–10982. https://doi.org/10.4238/2014.December.19.20 (2014).
doi: 10.4238/2014.December.19.20
pubmed: 25526218
Sekhwal, M. K. et al. Disease resistance gene analogs (RGAs) in plants. Int. J. Mol. Sci.16, 19248–19290. https://doi.org/10.3390/ijms160819248 (2015).
doi: 10.3390/ijms160819248
pubmed: 26287177
pmcid: 4581296
Yan, G. et al. Genome-wide analysis and expression profiles of glyoxalase gene families in Chinese cabbage (Brassica rapa L). PLoS One13, e0191159. https://doi.org/10.1371/journal.pone.0191159 (2018).
doi: 10.1371/journal.pone.0191159
pubmed: 29324881
pmcid: 5764358
Su, H. et al. Comprehensive analysis of the full-length transcripts and alternative splicing involved in clubroot resistance in Chinese cabbage. J. Integr. Agric.22, 3284–3295. https://doi.org/10.1016/j.jia.2022.09.014 (2023).
doi: 10.1016/j.jia.2022.09.014
Chen, J., Pang, W., Chen, B., Zhang, C. & Piao, Z. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection. Front. Plant. Sci.6, 1183. https://doi.org/10.3389/fpls.2015.01183 (2015).
doi: 10.3389/fpls.2015.01183
pubmed: 26779217
Ji, R. et al. Proteomic analysis of the interaction between Plasmodiophora brassicae and Chinese cabbage (Brassica rapa L. ssp. Pekinensis) at the initial infection stage. Sci. Hortic.233, 386–393. https://doi.org/10.1016/J.SCIENTA.2018.02.006 (2018).
doi: 10.1016/J.SCIENTA.2018.02.006
Nie, S., Zhang, M. & Zhang, L. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genom.18, 842. https://doi.org/10.1186/s12864-017-4240-2 (2017).
doi: 10.1186/s12864-017-4240-2
Ge, W. et al. Analysis of the role of BrRPP1 gene in Chinese cabbage infected by Plasmodiophora brassicae. Front. Plant Sci.14 https://doi.org/10.3389/fpls.2023.1082395 (2023).
Su, Y. et al. Identification, phylogeny, and transcript of chitinase family genes in sugarcane. Sci. Rep.5, 10708. https://doi.org/10.1038/srep10708 (2015).
doi: 10.1038/srep10708
pubmed: 26035173
pmcid: 4451799
Dong, R. et al. Transcriptome analyses reveal candidate pod shattering-associated genes involved in the pod ventral sutures of common vetch (Vicia sativa L). Front. Plant. Sci.8, 649. https://doi.org/10.3389/fpls.2017.00649 (2017).
doi: 10.3389/fpls.2017.00649
pubmed: 28496452
pmcid: 5406471
Schwelm, A. et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci. Rep.5, 11153. https://doi.org/10.1038/srep11153 (2015).
doi: 10.1038/srep11153
pubmed: 26084520
pmcid: 4471660
Mei, J. et al. Understanding the resistance mechanism in Brassica napus to clubroot caused by Plasmodiophora brassicae. Phytopathology. 109, 810–818. https://doi.org/10.1094/phyto-06-18-0213-r (2019).
doi: 10.1094/phyto-06-18-0213-r
pubmed: 30614377
Aghaie, P., Tafreshi, S. A. H., Ebrahimi, M. A. & Haerinasab, M. Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Sci. Hortic.232, 1–12. https://doi.org/10.1016/j.scienta.2017.12.041 (2018).
doi: 10.1016/j.scienta.2017.12.041
Kohler, A. C., Simmons, B. A. & Sale, K. L. Structure-based engineering of a plant-fungal hybrid peroxidase for enhanced temperature and pH tolerance. Cell Chem. Biol.25, 974–983e973. https://doi.org/10.1016/j.chembiol.2018.04.014 (2018).
doi: 10.1016/j.chembiol.2018.04.014
pubmed: 29805035
Lahlali, R. et al. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS One9, e94144. https://doi.org/10.1371/journal.pone.0094144 (2014).
doi: 10.1371/journal.pone.0094144
pubmed: 24714177
pmcid: 3979836
Ji, R. et al. The salicylic acid signaling pathway plays an important role in the resistant process of Brassica rapa L. ssp. pekinensis to Plasmodiophora brassicae Woronin. J. Plant. Growth Regul.40, 1–18. https://doi.org/10.1007/s00344-020-10105-4 (2020).
doi: 10.1007/s00344-020-10105-4
Poraty-Gavra, L. et al. The Arabidopsis rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant physiol.161, 1172–1188. https://doi.org/10.1104/pp.112.213165 (2013).
doi: 10.1104/pp.112.213165
pubmed: 23319551
pmcid: 3585588
Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J. & Solano, R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell15, 165–178. https://doi.org/10.1105/tpc.007468 (2003).
doi: 10.1105/tpc.007468
pubmed: 12509529
pmcid: 143489
Lemarié, S. et al. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant. Cell Physiol.56, 2158–2168. https://doi.org/10.1093/pcp/pcv127 (2015).
doi: 10.1093/pcp/pcv127
pubmed: 26363358
Nitschke, S. et al. Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell28, 1616–1639. https://doi.org/10.1105/tpc.16.00016 (2016).
doi: 10.1105/tpc.16.00016
pubmed: 27354555
pmcid: 4981127