Plant-associated microbiota as a source of antagonistic bacteria against the phytopathogen Erwinia amylovora.


Journal

Environmental microbiology reports
ISSN: 1758-2229
Titre abrégé: Environ Microbiol Rep
Pays: United States
ID NLM: 101499207

Informations de publication

Date de publication:
08 2022
Historique:
received: 22 07 2021
accepted: 21 03 2022
pubmed: 12 4 2022
medline: 27 7 2022
entrez: 11 4 2022
Statut: ppublish

Résumé

Control of bacterial plant diseases is a major concern, as they affect economically important species and spread easily, such as the case of fire blight of rosaceous caused by Erwinia amylovora. In the search for alternatives to the use of agrochemicals and antibiotics, this work presents a screening of natural bacterial antagonists of this relevant and devastating phytopathogen. We recovered bacterial isolates from different plant tissues and geographical origins and then selected those with the strongest ability to reduce fire blight symptoms ex vivo and remarkable in vitro antagonistic activity against E. amylovora. None of them elicited a hypersensitivity reaction in tobacco leaves, most produced several hydrolytic enzymes and presented other biocontrol and/or plant growth-promoting activities, such as siderophore production and phosphate solubilization. These isolates, considered as biocontrol candidates, were identified by 16S rRNA sequencing as Pseudomonas rhizosphaerae, Curtobacterium flaccumfaciens, Enterobacter cancerogenus, Pseudomonas azotoformans, Rosenbergiella epipactidis and Serratia plymuthica. This is the first time that the last five bacterial species are reported to have biocontrol potential against E. amylovora.

Identifiants

pubmed: 35403335
doi: 10.1111/1758-2229.13064
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

559-569

Informations de copyright

© 2022 Society for Applied Microbiology and John Wiley & Sons Ltd.

Références

Ahmed, N., and Shahab, S. (2011) Phosphate solubilization: their mechanism genetics and application. Int J Microbiol 9: 4408-4412.
Aldwinckle, H.S., Bhaskara Reddy, M.V., and Norelli, J.L. (2002) Evaluation of control of fire blight infection of apple blossoms and shoots with SAR inducers, biological agents, a growth regulator, copper compounds, and other materials. Acta Hort 590: 325-331.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local aligment search tool. J Mol Biol 215: 403-410.
Álvarez-Pérez, S., de Vega, C., and Herrera, C.M. (2013) Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns. PLoS ONE 8: e75797.
Aznar, A., and Dellagi, A. (2015) New insights into the role of siderophores as triggers of plant immunity. J Exp Bot 66: 3001-3010.
Bahadou, S.A., Ouijja, A., Karfach, A., Tahiri, A., and Lahlali, R. (2018) New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microb Pathog 117: 7-15.
Barbé, S., Llop, P., Blom, J., Cabrefiga, J., Goesmann, A., Duffy, B., Montesinos, E., Smits, T. H. M., and López, M. M. (2013) Complete sequence of Erwinia piriflorinigrans plasmids pEPIR37 and pEPIR5 and role of pEPIR37 in pathogen virulence. Plant Pathology, 62: 786-798. https://doi.org/10.1111/ppa.12002
Bartlewicz, J., Lievens, B., Honnay, O., and Jacquemyn, H. (2016) Microbial diversity in the floral nectar of Linaria vulgaris along an urbanization gradient. BMC Ecol 16: 18.
Berg, G., Köberl, M., Rybakova, D., Müller, H., Grosch, R., and Smalla, K. (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 93: fix050. https://doi.org/10.1093/femsec/fix050.
Bonaterra, A., Badosa, E., Cabrefiga, J., Francés, J., and Montesinos, E. (2012) Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees (Berl West) 26: 215-226.
Bonaterra, A., Mari, M., Casalini, L., and Montesinos, E. (2003) Biological control of Monilinia laxa and Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. Int J Food Microbiol 84: 93-104.
Broggini, G. A. L., Duffy, B., Holliger, E., Schärer, H. -J., Gessler, C., and Patocchi, A. (2005) Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard. European Journal of Plant Pathology, 111: 93-100. https://doi.org/10.1007/s10658-004-1423-x
Cabrefiga, J., Bonaterra, A., and Montesinos, E. (2007) Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight. Int Microbiol 10: 123-132.
Cabrefiga, J., and Montesinos, E. (2005) Analysis of aggressiveness of Erwinia amylovora using disease-dose and time relationships. Phytopathology 95: 1430-1437.
Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., et al. (2018) Antagonism of two plant-growth promoting bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8: 4360.
Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., et al. (2018) Versatile antagonistic activities of soil-borne bacillus spp. and pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9: 143.
Charkowski, A.O., Alfano, J.R., Preston, G., Yuan, J., He, S.Y., and Collmer, A. (1998) The pseudomonas syringae pv. Tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180: 5211-5217.
Chilton, M.D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P., and Nester, E.W. (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. PNAS 71: 3672-3676.
Czajkowski, R., de Boer, W.J., van Veen, J.A., and van der Wolf, J.M. (2012) Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathology, 61: 677-688. https://doi.org/10.1111/j.1365-3059.2011.02565.x
Davin-Regli, A., Lavigne, J.P., and Pages, J.-M. (2019) Enterobacter spp.: update on taxonomy, clinical aspect and emerging antimicrobial resistance. Clin Microbiol Rev 32: e00002-e00019.
European and Mediterranean Plant Protection Organization (EPPO) Diagnostic (2013) PM 7/20 (2)Erwinia amylovora. EPPO Bulletin, 43: 21-45. https://doi.org/10.1111/epp.12019
Fang, Y., Wu, L., Chen, G., and Feng, G. (2016) Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium. J Biotechnol 227: 25-26.
Förster, H., McGhee, G.C., Sundin, G.W., and Adaskaveg, J.E. (2015) Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology 105: 1302-1310.
Gottsberger, R.A. (2010) Development and evaluation of a real-time PCR assay targeting chromosomal DNA of Erwinia amylovora. Lett App Microbiol 51: 285-292.
Sumer, H., and Yesim, A. (2018) Biological control of watermelon seedling blight caused by Acidovorax citrulli using antagonistic bacteria from the genera Curtobacterium, Microbacterium and Pseudomonas. Plant Protection Science, 54: 138-146. https://doi.org/10.17221/168/2016-pps
Iacobellis, N.S., Lo Cantore, P., Capasso, F., and Senatore, F. (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 53: 57-61.
Ishimaru, C.A. (1988) Multiple Antibiotic Production by Erwinia herbicola. Phytopathology, 78: 746. https://doi.org/10.1094/phyto-78-746
Kazaks, A., Dislers, A., Lipowsky, G., Nikolajeva, V., and Tarsa, K. (2012) Complete genome sequence of the Enterobacter cancerogenus bacteriophage Enc34. J Virol 86: 11403-11404.
Kharadi, R.R., Schachterle, J.K., Yuan, X., Castiblanco, L.F., Peng, J., Slack, S.M., et al. (2021) Genetic dissection of the Erwinia amylovora disease cycle. Annu Rev Phytopathol 59: 191-212.
Kiarood, S.L.A., Rahnama, K., Golmohammadi, M., and Nasrollanejad, S. (2020) Quorum-quenching endophytic bacteria inhibit disease caused by Pseudomonas syringae pv. syringae in Citrus cultivars. Basic Microbiol 60: 746-757.
Kim, D., Lee, S.Y., Ahn, S.H., Han, J.H., and Park, J.W. (2020) Biological control of Gom-chwi (Ligularia fischeri) Phytophthora root rot with Enterobacter asburiae ObRS-5 to suppress zoosporangia formation and zoospores germination. Plant Pathol J 36: 244-254.
Köhl, J., Kolnaar, R., and Ravensberg, W.J. (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10: 845.
Krzyzanowska, D.M., Maciag, T., Siwinska, J., Krychowiak, M., Jafra, S., and Czajkowski, R. (2019) Compatible mixture of bacterial antagonists developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. Plant Disease 103: 1374-1382.
Lacava, p.T., Li, W., Araújo, W.L., Azevedo, J.L., and Hartung, J.S. (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45: 388-393.
Lenaerts, M., Álvarez-Pérez, S., de Vega, C., Van Assche, A., Johnson, S.D., Willems, K.A., et al. (2014) Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst Appl Microbiol 37: 402-411.
Lenaerts, M., Goelen, T., Paulussen, C., Herrera-Malaver, B., Steensels, J., Van den Ende, W., et al. (2017) Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Funct Ecol 31: 2061-2069.
Llontop, M.E., Hurley, K., Tian, L., Bernal Galeano, V.A., Wildschutte, H.K., Marine, S.C., et al. (2020) Exploring rain as source of biological control agents for fire blight on apple. Front Microbiol 11: 199.
Martínez-Murcia, A.J., Antón, A.I., and Rodríguez-Valera, F. (1999) Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli. Int J Syst Evol Microbiol 49: 601-610.
Mikiciński, A., Puławska, J., Molzhigitova, A., and Sobiczewski, P. (2020) Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora). European Journal of Plant Pathology, 156: 257-272. https://doi.org/10.1007/s10658-019-01885-x
Navarro-Garcia, F., Ruiz-Pérez, F., Cataldi, Á., and Larzábal, M. (2019) Type VI secretion system in pathogenic Escherichia coli: structure, role in virulence, and acquisition. Front Microbiol 10: 1965.
Ngugi, H.K., Lehman, B.L., and Madden, L.V. (2011) Multiple treatment meta-analysis of products evaluated for control of fire blight in the eastern United States. Phytopathology 101: 512-522.
Ordax, M., Biosca, E., Wimalajeewa, S., López, M.M., and Marco-Noales, E. (2009) Survival of Erwinia amylovora in mature apple fruit calyces through the viable but nonculturable (VBNC) state. J Appl Microbiol 107: 106-116.
Ordax, M., Marco-Noales, E., López, M.M., and Biosca, E.G. (2006) Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72: 3482-3488.
Ordax, M., Piquer-Salcedo, J.E., Santander, R.D., Sabater-Munoz, B., Biosca, E.G., López, M.M., and Marco-Noales, E. (2015) Medfly Ceratitis capitata as potential vector for fire blight pathogen Erwinia amylovora: survival and transmission. PLoS One 10: e0127560.
Palacio-Bielsa, A., Cambra, M.A., and López, M.M. (2006) Characterisation of potato isolates of Dickeya chrysanthemi in Spain by a microtitre system for biovar determination. Ann Appl Biol 148: 157-164.
Paternoster, T., Défago, G., Duffy, B., Gessler, C., and Pertot, I. (2010) Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. Int Microbiol 13: 195-206.
Pikovskaya, R.I. (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17: 362-370.
Pusey, p.L. (1999) Laboratory and field trials with selected microorganisms as biocontrol agents for fire blight. Acta Horticulturae, 655-662. https://doi.org/10.17660/actahortic.1999.489.117
Rana, K.L., Kour, D., Kaur, T., Devi, R., Yadav, A.N., Yadav, N., et al. (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113: 1075-1107.
Roselló, G., Bonaterra, A., Francés, J., Montesinos, L., Badosa, E., and Montesinos, E. (2013) Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. European Journal of Plant Pathology, 137: 621-633. https://doi.org/10.1007/s10658-013-0275-7
Rosenblueth, M., and Martínez-Romero, E. (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19: 827-837.
Sang, M.K., Kim, E.N., Han, G.D., Kwack, M.S., Jeun, Y.C., and Kim, K.D. (2014) Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 104: 834-842.
Santhanam, R., Menezes, R.C., Grabe, V., Li, D., Baldwin, I.T., and Groten, K. (2019) A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease. Mol Ecol 28: 1154-1169.
Santos Kron, A., Zengerer, V., Bieri, M., Dreyfuss, V., Sostizzo, T., Schmid, M., et al. (2020) Pseudomonas orientalis F9 pyoverdine, safracin, and phenazine mutants remain effective antagonists against Erwinia amylovora in apple flowers. Appl Environ Microbiol 86: e02620-e02619.
Schwyn, B., and Neilands, J.B. (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47-56.
Spence, N., Hill, L., and Morris, J. (2020) How the global threat of pests and diseases impacts plants, people, and the planet. Plants, People, Planet 2: 5-13.
Sundin, G.W., and Wang, N. (2018) Antibiotic resistance in plant-pathogenic bacteria. Annu Rev Phytopathol 56: 161-180.
Thomson, S.V. (2000) Epidemiology of fire blight. In Fire Blight. The Disease and Its Causative Agent, Erwinia amylovora. Vanneste, J.L. (ed). Wallingford, UK: CABI Publishing, pp. 9-36.
Tolba, I.H., and Soliman, M.A. (2013) Efficacy of native antagonistic bacterial isolates in biological control of crown gall disease in Egypt. Ann Agric Sci 58: 43-49.
Vanneste, J.L., Cornish, D.A., Yu, J., and Voyle, M.D. (2002) P10C: a new biological control agent for control of fire blight which can be sprayed or distributed using honey bees. Acta Horticulturae, 231-235. https://doi.org/10.17660/actahortic.2002.590.33
Vleesschauwer, D. de, and Höfte, M. (2007) Using Serratia plymuthica to control fungal pathogens of plants. CAB Rev 2. https://doi.org/10.1079/PAVSNNR20072046
Whipps, J.M. (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52: 487-511.
Wilson, M. (1993) Interactions between the biological control agent pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology, 83: 117. https://doi.org/10.1094/phyto-83-117
Yi, Y., Huang, W., and Ge, Y. (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24: 1059-1065. https://doi.org/10.1007/s11274-007-9575-4
Zengerer, V., Schmid, M., Bieri, M., Müller, D.C., Remus-Emsermann, M.N.P., Ahrens, C.H., and Pelludat, C. (2018) Pseudomonas orientalis F9: a potent antagonist against phytopathogens with phytotoxic effect in the apple flower. Front Microbiol 9: 145.

Auteurs

Silvia Barbé (S)

Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain.

Àngela Figàs-Segura (À)

Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain.

M'hamed Benada (M)

Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain.
Faculty of Natural Sciences, Earth and the Universe, 8 Mai 1945 University, Guelma, Algeria.

Inmaculada Navarro-Herrero (I)

Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain.

Telma Maria Sampaio (TM)

Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain.

Elena G Biosca (EG)

Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain.

Ester Marco-Noales (E)

Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315 km 10.7, 46113 Moncada, Valencia, Spain.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages

Classifications MeSH