Evolution of binding preferences among whole-genome duplicated transcription factors.

DNA binding S. cerevisiae evolutionary biology functional divergence gene regulation genetics genomics paralogs transcription factors whole genome duplication

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
11 04 2022
Historique:
received: 22 08 2021
accepted: 20 01 2022
entrez: 11 4 2022
pubmed: 12 4 2022
medline: 14 4 2022
Statut: epublish

Résumé

Throughout evolution, new transcription factors (TFs) emerge by gene duplication, promoting growth and rewiring of transcriptional networks. How TF duplicates diverge was studied in a few cases only. To provide a genome-scale view, we considered the set of budding yeast TFs classified as whole-genome duplication (WGD)-retained paralogs (~35% of all specific TFs). Using high-resolution profiling, we find that ~60% of paralogs evolved differential binding preferences. We show that this divergence results primarily from variations outside the DNA-binding domains (DBDs), while DBD preferences remain largely conserved. Analysis of non-WGD orthologs revealed uneven splitting of ancestral preferences between duplicates, and the preferential acquiring of new targets by the least conserved paralog (biased neo/sub-functionalization). Interactions between paralogs were rare, and, when present, occurred through weak competition for DNA-binding or dependency between dimer-forming paralogs. We discuss the implications of our findings for the evolutionary design of transcriptional networks.

Identifiants

pubmed: 35404235
doi: 10.7554/eLife.73225
pii: 73225
pmc: PMC9000951
doi:
pii:

Substances chimiques

Transcription Factors 0
DNA 9007-49-2

Banques de données

GEO
['GSE179430']
Dryad
['10.5061/dryad.xgxd254j6']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2022, Gera et al.

Déclaration de conflit d'intérêts

TG, FJ, RM No competing interests declared, NB Senior editor, eLife

Références

Nature. 2007 Sep 6;449(7158):54-61
pubmed: 17805289
Microbiol Mol Biol Rev. 2006 Sep;70(3):583-604
pubmed: 16959962
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Trends Genet. 2006 Dec;22(12):642-4
pubmed: 17045359
Nat Commun. 2015 Feb 06;6:6129
pubmed: 25655993
Nat Methods. 2018 Aug;15(8):617-622
pubmed: 29988094
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9
pubmed: 15800040
Nature. 2003 Jan 2;421(6918):63-6
pubmed: 12511954
Nucleic Acids Res. 2018 Jul 2;46(W1):W329-W337
pubmed: 29860432
Genome Res. 2005 Oct;15(10):1456-61
pubmed: 16169922
PLoS Biol. 2006 Apr;4(4):e109
pubmed: 16555924
Elife. 2017 Jan 16;6:
pubmed: 28079019
Genetics. 2000 Jan;154(1):459-73
pubmed: 10629003
Curr Biol. 2014 Aug 4;24(15):R695-7
pubmed: 25093562
PLoS Genet. 2010 Nov 04;6(11):e1001185
pubmed: 21079670
Science. 2000 Nov 10;290(5494):1151-5
pubmed: 11073452
Trends Plant Sci. 2015 Dec;20(12):814-821
pubmed: 26638775
Nature. 2003 Jul 10;424(6945):147-51
pubmed: 12853946
Nat Commun. 2015 Oct 22;6:8733
pubmed: 26490019
Mol Cell. 2014 Aug 21;55(4):640-8
pubmed: 25042805
Science. 2017 Feb 10;355(6325):630-634
pubmed: 28183979
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D108-10
pubmed: 16381825
Curr Opin Struct Biol. 2021 Dec;71:110-115
pubmed: 34303077
Genome Res. 2011 May;21(5):645-57
pubmed: 21324878
Cell Syst. 2018 Apr 25;6(4):470-483.e8
pubmed: 29605182
PLoS Comput Biol. 2013;9(5):e1003073
pubmed: 23696728
Nat Protoc. 2013 Mar;8(3):539-54
pubmed: 23429716
Genomics. 1993 Apr;16(1):1-19
pubmed: 8486346
Nat Commun. 2014 Sep 10;5:4868
pubmed: 25204769
Mol Cell. 2020 Aug 6;79(3):459-471.e4
pubmed: 32553192
EMBO J. 2010 Jul 7;29(13):2147-60
pubmed: 20517297
Science. 1993 Aug 13;261(5123):909-11
pubmed: 8346441
Yeast. 2004 Aug;21(11):947-62
pubmed: 15334558
Nat Rev Genet. 2006 Sep;7(9):715-27
pubmed: 16983801
Nat Genet. 2008 May;40(5):676-81
pubmed: 18408719
Elife. 2022 Apr 11;11:
pubmed: 35404235
PLoS Genet. 2008 Sep 12;4(9):e1000191
pubmed: 18787702
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12349-54
pubmed: 23836653
Methods Enzymol. 2002;351:34-49
pubmed: 12073355
PLoS Biol. 2005 Oct;3(10):e314
pubmed: 16128622
Trends Genet. 2008 Oct;24(10):485-8
pubmed: 18786741
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11653-8
pubmed: 16861297
Nucleic Acids Res. 2014 Apr;42(6):3736-49
pubmed: 24413663
J Biol Chem. 2013 Jul 12;288(28):20510-9
pubmed: 23733186
Science. 2020 Jun 26;368(6498):
pubmed: 32586993
Mol Syst Biol. 2007;3:86
pubmed: 17389874
BMC Genomics. 2017 Jan 6;18(1):46
pubmed: 28061859
Cell. 2008 Jun 27;133(7):1266-76
pubmed: 18585359
Genome Biol. 2018 Feb 9;19(1):19
pubmed: 29426353
Yeast. 1995 Apr 15;11(4):355-60
pubmed: 7785336
Genome Res. 2006 Jul;16(7):805-14
pubmed: 16818725
Genes Dev. 2014 Jun 15;28(12):1272-7
pubmed: 24874988
Nat Rev Genet. 2009 Apr;10(4):252-63
pubmed: 19274049
Cell. 2014 Sep 11;158(6):1431-1443
pubmed: 25215497
Nature. 2011 Dec 07;480(7376):250-3
pubmed: 22158248
Genetics. 1999 Apr;151(4):1531-45
pubmed: 10101175
Science. 2020 Jun 26;368(6498):1424-1425
pubmed: 32587005
G3 (Bethesda). 2021 Feb 9;11(2):
pubmed: 33609368
Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5
pubmed: 22110037
Nature. 1997 Jun 12;387(6634):708-13
pubmed: 9192896
Cell. 2014 Sep 25;159(1):58-68
pubmed: 25259920
Nature. 2008 Aug 7;454(7205):762-5
pubmed: 18594508
Trends Genet. 2021 May;37(5):421-432
pubmed: 33414013
Genome Biol. 2002;3(2):RESEARCH0008
pubmed: 11864370
Nat Genet. 2004 May;36(5):492-6
pubmed: 15107850
Chromosome Res. 2009;17(5):699-717
pubmed: 19802709
PLoS Genet. 2008 Mar 14;4(3):e1000014
pubmed: 18369440
Cell. 2013 Jan 17;152(1-2):327-39
pubmed: 23332764
Plant Cell. 2004 Jul;16(7):1679-91
pubmed: 15208398
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W645-8
pubmed: 17526519
Genetics. 2007 Mar;175(3):1341-50
pubmed: 17194778
Hereditas. 1968;59(1):169-87
pubmed: 5662632
Nature. 2013 May 2;497(7447):127-31
pubmed: 23615609
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Nat Genet. 2019 Jun;51(6):981-989
pubmed: 31133749
Genome Biol. 2006;7(5):R43
pubmed: 16723033
PLoS Biol. 2019 Nov 22;17(11):e3000289
pubmed: 31756183
Front Genet. 2015 Oct 27;6:322
pubmed: 26579194
PLoS Biol. 2012;10(12):e1001446
pubmed: 23239941
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641
pubmed: 30976793
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419
pubmed: 33125078
Genetics. 2005 Feb;169(2):1157-64
pubmed: 15654095
Genome Res. 2020 Jun;30(6):910-923
pubmed: 32660958
Eur J Biochem. 1997 Aug 1;247(3):776-83
pubmed: 9288897
BMC Bioinformatics. 2014 Jan 13;15:7
pubmed: 24410852
Brief Funct Genomics. 2010 Jan;9(1):65-78
pubmed: 20081217
Curr Opin Genet Dev. 2003 Apr;13(2):199-206
pubmed: 12672498
Yeast. 1998 Jan 30;14(2):115-32
pubmed: 9483801
Mol Syst Biol. 2010 Nov 16;6:429
pubmed: 21081923
Wiley Interdiscip Rev Syst Biol Med. 2018 Apr 25;:e1423
pubmed: 29694718
J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):488-99
pubmed: 24376223
Nucleic Acids Res. 2010 Nov;38(21):7364-77
pubmed: 20675356
Sci Rep. 2017 Aug 8;7(1):7596
pubmed: 28790414
Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174
pubmed: 31106371
Trends Genet. 2005 Apr;21(4):219-26
pubmed: 15797617
Science. 2013 Oct 4;342(6154):104-8
pubmed: 24092741
PLoS Biol. 2005 Jul;3(7):e245
pubmed: 16000021
Mol Biol Evol. 2013 Aug;30(8):1830-42
pubmed: 23625888
Nat Methods. 2018 Aug;15(8):598-600
pubmed: 29988096
PLoS Biol. 2015 Aug 07;13(8):e1002220
pubmed: 26252497

Auteurs

Tamar Gera (T)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

Felix Jonas (F)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

Roye More (R)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

Naama Barkai (N)

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

Articles similaires

Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Animals Humans Mice Neoplasms Tumor Microenvironment
Genome, Chloroplast Phylogeny Evolution, Molecular Ilex Microsatellite Repeats

Classifications MeSH