Properties of Rice-Based Beverages Fermented with Lactic Acid Bacteria and
bacteria population
carbohydrates
lactic acid
milk substitutes
propionic acid
starter cultures
syneresis
texture properties
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
15 Apr 2022
15 Apr 2022
Historique:
received:
17
03
2022
revised:
10
04
2022
accepted:
13
04
2022
entrez:
23
4
2022
pubmed:
24
4
2022
medline:
27
4
2022
Statut:
epublish
Résumé
In recent times, consumers have shown increasing interest in plant substitutes for fermented dairy products. This study aimed to investigate the properties of yogurt-type rice-based beverages fermented with lactic acid bacteria and Propionibacterium. The changes in pH, viable population of bacteria, physical properties, and carbohydrate content of these beverages were tested. Fermentation using only Propionibacterium was insufficient to obtain a product with an acidity level similar to that of milk-based yogurt (pH < 4.5). After fermentation, the tested beverages had a high number of Lactobacillus sp. (7.42−8.23 log10 CFU/mL), Streptococcus thermophilus (8.01−8.65 log10 CFU/mL), and Bifidobacterium animalis subsp. lactis (8.28−8.50 log10 CFU/mL). The hardness (2.90−10.40 N) and adhesiveness (13.79−42.16 mJ) of the samples after 14 days of storage at 6 °C varied depending on the starter culture used. The syneresis of all samples ranged between 29% and 31%, which was lower or close to that of milk-based yogurts. The content of individual sugars in the samples also varied depending on the starter culture used for fermentation. The results suggest that the combination of lactic and propionic fermentation helps in the production of rice-based yogurt-type milk substitutes.
Identifiants
pubmed: 35458754
pii: molecules27082558
doi: 10.3390/molecules27082558
pmc: PMC9032279
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Plant Foods Hum Nutr. 2017 Mar;72(1):26-33
pubmed: 27817089
Int J Food Microbiol. 2015 Jun 16;203:70-7
pubmed: 25791252
J Dairy Sci. 2017 Feb;100(2):901-907
pubmed: 28012628
Food Res Int. 2018 Sep;111:187-197
pubmed: 30007675
Compr Rev Food Sci Food Saf. 2019 Sep;18(5):1403-1436
pubmed: 33336904
Braz J Microbiol. 2014 Oct 09;45(3):1023-30
pubmed: 25477939
Microorganisms. 2021 Dec 07;9(12):
pubmed: 34946135
Food Microbiol. 2013 Feb;33(1):1-10
pubmed: 23122495
Appl Microbiol Biotechnol. 2018 Jan;102(2):515-538
pubmed: 29167919
Food Sci Nutr. 2019 Feb 13;7(3):907-917
pubmed: 30918633
Crit Rev Food Sci Nutr. 2020;60(18):3005-3023
pubmed: 31617734
Microorganisms. 2021 Dec 31;10(1):
pubmed: 35056540
Appl Microbiol Biotechnol. 2019 Dec;103(23-24):9263-9275
pubmed: 31686143
J Proteomics. 2015 Jan 15;113:447-61
pubmed: 25150945
J Food Sci Technol. 2018 Jan;55(1):10-20
pubmed: 29358791
Curr Opin Biotechnol. 2013 Apr;24(2):148-54
pubmed: 23228389
Int J Food Microbiol. 2017 Jan 16;241:39-48
pubmed: 27744211
Food Sci Nutr. 2017 Nov 12;6(1):67-76
pubmed: 29387363
Anaerobe. 2015 Aug;34:169-73
pubmed: 26079323
J Agric Food Chem. 2012 Aug 15;60(32):7917-27
pubmed: 22823107
Int J Biol Macromol. 2019 Jan;121:882-888
pubmed: 30342129
Eur J Nutr. 2020 Feb;59(1):19-34
pubmed: 30937581
Front Microbiol. 2019 Jan 09;9:3133
pubmed: 30687239
Lett Appl Microbiol. 2017 Aug;65(2):114-124
pubmed: 28378421
Front Microbiol. 2016 Mar 24;7:377
pubmed: 27047484
Foods. 2020 Apr 03;9(4):
pubmed: 32260061
Int J Food Microbiol. 2011 Sep 1;149(1):19-27
pubmed: 21620505
Food Sci Technol Int. 2015 Mar;21(2):145-57
pubmed: 24464238
Food Res Int. 2019 Dec;126:108612
pubmed: 31732041
Crit Rev Microbiol. 2011 Feb;37(1):91-8
pubmed: 21162695
J Dairy Sci. 2014 May;97(5):2578-90
pubmed: 24745665
Crit Rev Food Sci Nutr. 2016;56(3):339-49
pubmed: 25575046