Detection of intralayer alignment in multicomponent lipids by dynamic speckle pattern analysis.

activity cholesterol domain lipid multicomponent speckle pattern

Journal

Journal of biophotonics
ISSN: 1864-0648
Titre abrégé: J Biophotonics
Pays: Germany
ID NLM: 101318567

Informations de publication

Date de publication:
08 2022
Historique:
revised: 08 04 2022
received: 09 02 2022
accepted: 19 04 2022
pubmed: 24 4 2022
medline: 5 8 2022
entrez: 23 4 2022
Statut: ppublish

Résumé

Multicomponent mixtures of bilayer lipids, thanks to the coexistence of liquid-crystalline phases in their structures, may be used in the development of functional membranes. In such membranes interlayer ordering distributes across membrane lamellae, resulting in long-range alignment of phase-separated domains. In this paper, we explore the dynamics of this phenomenon by laser speckle pattern analysis. We show that cholesterol content decreases the activity, and the rate of the domains size development is related to the change of physical roughness of the multicomponent lipid mixture. Our results are in agreement with the previous experimental reports. However, our experimental procedure is an easy-to-implement and effective methodology.

Identifiants

pubmed: 35460181
doi: 10.1002/jbio.202200034
doi:

Substances chimiques

Lipid Bilayers 0
Cholesterol 97C5T2UQ7J

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200034

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

C. Poojari, A. Zak, M. Dzieciuch-Rojek, A. Bunker, M. Kepczynski, T. Rog, J. Phys. Chem. B. 2020, 124(11), 2139.
G. R. Heath, M. Li, H. Rong, V. Radu, S. Frielingsdorf, O. Lenz, J. N. Butt, L. J. Jeuken, Adv. Funct. Mater. 2017, 27(17), 1606265.
L. Tayebi, Y. Ma, D. Vashaee, G. Chen, S. K. Sinha, A. N. Parikh, Nat. Mater. 2012, 11(12), 1074.
S. L. Veatch, S. L. Keller, Phys. Rev. Lett. 2002, 89(26), 268101.
H. M. McConnell, M. Vrljic, Annu. Rev. Biophys. Biomol. Struct. 2003, 32(1), 469.
A. Hammond, F. Heberle, T. Baumgart, D. Holowka, B. Baird, G. Feigenson, Proc. Natl. Acad. Sci. 2005, 102(18), 6320.
K. Bacia, P. Schwille, T. Kurzchalia, Proc. Natl. Acad. Sci. 2005, 102(9), 3272.
E. L. Elson, E. Fried, J. E. Dolbow, G. M. Genin, Annu. Rev. Biophys. 2010, 39, 207.
D. Brown, E. London, Annu. Rev. Cell Dev. Biol. 1998, 14(1), 111.
B. Bechinger, Nat. Mater. 2012, 11(12), 1005.
T. S. Ursell, W. S. Klug, R. Phillips, Proc. Natl. Acad. Sci. 2009, 106(32), 13301.
V. Farzamrad, A.-R. Moradi, A. Darudi, L. Tayebi, J. Biomed. Opt. 2016, 21(12), 126016.
M. A. Barrett, S. Zheng, L. A. Toppozini, R. J. Alsop, H. Dies, A. Wang, N. Jago, M. Moore, M. C. Rheinstädter, Soft Matter 2013, 9(39), 9342.
R. J. Alsop, C. L. Armstrong, A. Maqbool, L. Toppozini, H. Dies, M. C. Rheinstädter, Soft Matter 2015, 11(24), 4756.
K. Gaus, E. Chklovskaia, B. Fazekas de St, W. Groth, T. H. Jessup, J. Cell Biol. 2005, 171(1), 121.
A. Biancotto, S. J. Iglehart, C. Vanpouille, C. E. Condack, A. Lisco, E. Ruecker, I. Hirsch, L. B. Margolis, J.-C. Grivel, Blood 2008, 111(2), 699.
S. Campbell, S. M. Crowe, J. Mak, J. Clin. Virol. 2001, 22(3), 217.
Q. Gao, G. Wu, K. W. C. Lai, Biochemistry 2020, 59(8), 992.
J. Pan, S. Tristram-Nagle, J. F. Nagle, Phys. Rev. E 2009, 80(2), 021931.
N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, B. Anvari, Soft Matter 2012, 8(32), 8350.
G. Khelashvili, D. Harries, J. Phys. Chem. B. 2013, 117(8), 2411.
Z. Al-Rekabi, S. Contera, Proc. Natl. Acad. Sci. 2018, 115(11), 2658.
H. Saito, W. Shinoda, J. Phys. Chem. B. 2011, 115(51), 15241.
P. J. Milianta, M. Muzzio, J. Denver, G. Cawley, S. Lee, Langmuir 2015, 31(44), 12187.
B. B. Issack, G. H. Peslherbe, J. Phys. Chem. B. 2015, 119(29), 9391.
W. Shinoda, Biochim. Biophys. Acta 2016, 1858(10), 2254.
R. J. Dotson, C. R. Smith, K. Bueche, G. Angles, S. C. Pias, Biophys. J. 2017, 112(11), 2336.
M. Lopez, J. Denver, S. E. Evangelista, A. Armetta, G. Di Domizio, S. Lee, Langmuir 2018, 34(5), 2147.
B. Javidi, A. Carnicer, A. Anand, G. Barbastathis, W. Chen, P. Ferraro, J. Goodman, R. Horisaki, K. Khare, M. Kujawinska, et al., Opt. Express 2021, 29(22), 35078.
T. O'Connor, J.-B. Shen, B. T. Liang, B. Javidi, Opt. Lett. 2021, 46(10), 2344.
T. O'Connor, A. Anand, B. Andemariam, B. Javidi, Biomed. Opt. Express 2020, 11(8), 4491.
A. Anand, I. Moon, B. Javidi, Proc. IEEE 2017, 105(5), 924.
S. D. Connell, D. A. Smith, Mol. Membr. Biol. 2006, 23(1), 17.
L. M. Rebelo, J. S. de Sousa, J. Mendes Filho, M. Radmacher, Nanotechnology 2013, 24(5), 055102.
A. J. Engler, F. Rehfeldt, S. Sen, D. E. Discher, Methods Cell Biol. 2007, 83, 521.
I. Remer, A. Bilenca, J. Biophotonics 2015, 8(11-12), 902.
J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications, Roberts and Company Publishers, Greenwood Village, CO 2007.
Y. A. Aizu, T. Asakura, Opt. Laser Technol. 1991, 23((4), 205.
G. Romero, C. Martinez, E. Alanis, G. Salazar, V. Broglia, L. Alvarez, Biosyst. Eng. 2009, 103(1), 116.
V. F. Rad, M. Panahi, R. Jamali, A. Darudi, A.-R. Moradi, Biomed. Opt. Express 2020, 11(11), 6324.
M. M. Amaral, M. del Valle, M. P. Raele, L. R. De Pretto, P. A. Ana, J. Biophotonics 2020, 13(7), e202000025.
R. A. Braga, L. Dupuy, M. Pasqual, R. Cardoso, Eur. Biophys. J. 2009, 38((5), 679.
R. Cardoso, R. Braga, Opt. Lasers Eng. 2014, 63, 19.
H. C. Grassi, L. C. García, M. L. Lobo-Sulbarán, A. Velásquez, F. A. Andrades-Grassi, H. Cabrera, J. E. Andrades-Grassi, E. D. Andrades, PLoS Negl. Trop. Dis. 2016, 10((12), e0005169.
E. E. Ramírez-Miquet, H. Cabrera, H. C. Grassi, E. de J. Andrades, I. Otero, D. Rodríguez, J. G. Darias, Lasers Med. Sci. 2017, 32((6), 1375.
A. Zdunek, A. Adamiak, P. M. Pieczywek, A. Kurenda, Opt. Lasers Eng. 2014, 52, 276.
A. Vladimirov, A. Baharev, A. Malygin, J. Mikhailova, I. Novoselova, D. Yakin, SPIE 2015, 9529, 95291F.
R. A. Braga, R. J. González-Peña, D. C. Viana, F. P. Rivera, J. Biomed. Opt. 2017, 22((4)), 045010.
S. Murialdo, G. H. Sendra, L. Passoni, R. Arizaga, J. F. Gonzalez, H. J. Rabal, M. Trivi, J. Biomed. Opt. 2009, 14(6), 064015.
R. Braga, W. Silva, T. Sáfadi, C. Nobre, Opt. Commun. 2008, 281((9), 2443.
B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D. S. Kumar, Int. J. Polym. Sci. 2011, 2011, 290602.
E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, H. Soliman, J. Mater. Process. Technol. 2002, 123((1), 133.
J. W. Davis, Proc. IEEE Workshop Detect. Recognit. Events Video, 2001, pp. 39-46.
M. Z. Ansari, E. E. Ramírez-Miquet, I. Otero, D. Rodríguez, J. G. Darias, J. Biomed. Opt. 2016, 21(6), 066006.
M. Z. Ansari, A. K. Nirala, Optik 2013, 124(15), 2180.
H. J. Rabal, R. Arizaga, N. L. Cap, E. Grumel, M. Trivi, J. Opt. 2003, 5(5), S381.
E. Kayahan, H. Oktem, F. Hacizade, H. Nasibov, O. Gundogdu, Tribol. Int. 2010, 43(1-2), 307.
Y.-K. Fuh, K. C. Hsu, J. R. Fan, Opt. Lasers Eng. 2012, 50(3), 312.

Auteurs

Majid Panahi (M)

Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.

Vahideh Farzam Rad (VF)

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.

Shiva Sasan (S)

Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.

Ramin Jamali (R)

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.

Ali-Reza Moradi (AR)

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Ahmad Darudi (A)

Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.

Articles similaires

Humans Female Male Arachnoid Middle Aged
Phosphatidylcholines Lipid Bilayers Unsupervised Machine Learning Thermodynamics Molecular Dynamics Simulation
Humans Osteoarthritis Lipid Metabolism Adipokines Fatty Acids

Classifications MeSH