Grasp-squeeze adaptation to changes in object compliance leads to dynamic beta-band communication between primary somatosensory and motor cortices.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
26 04 2022
Historique:
received: 24 12 2021
accepted: 04 04 2022
entrez: 27 4 2022
pubmed: 28 4 2022
medline: 29 4 2022
Statut: epublish

Résumé

In asking the question of how the brain adapts to changes in the softness of manipulated objects, we studied dynamic communication between the primary sensory and motor cortical areas when nonhuman primates grasp and squeeze an elastically deformable manipulandum to attain an instructed force level. We focused on local field potentials recorded from S1 and M1 via intracortical microelectrode arrays. We computed nonparametric spectral Granger Causality to assess directed cortico-cortical interactions between these two areas. We demonstrate that the time-causal relationship between M1 and S1 is bidirectional in the beta-band (15-30 Hz) and that this interareal communication develops dynamically as the subjects adjust the force of hand squeeze to reach the target level. In particular, the directed interaction is strongest when subjects are focused on maintaining the instructed force of hand squeeze in a steady state for several seconds. When the manipulandum's compliance is abruptly changed, beta-band interareal communication is interrupted for a short period (~ 1 s) and then is re-established once the subject has reached a new steady state. These results suggest that transient beta oscillations can provide a communication subspace for dynamic cortico-cortical S1-M1 interactions during maintenance of steady sensorimotor states.

Identifiants

pubmed: 35474117
doi: 10.1038/s41598-022-10871-z
pii: 10.1038/s41598-022-10871-z
pmc: PMC9042850
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6776

Informations de copyright

© 2022. The Author(s).

Références

J Neurophysiol. 2004 Jan;91(1):449-73
pubmed: 12968016
J Neurophysiol. 2018 Jun 1;119(6):2212-2228
pubmed: 29442553
Neuron. 2001 Jan;29(1):33-44
pubmed: 11182079
J Neurophysiol. 2005 Feb;93(2):1074-89
pubmed: 15356183
Neuron. 2019 Apr 3;102(1):249-259.e4
pubmed: 30770252
Naturwissenschaften. 2003 Jul;90(7):309-12
pubmed: 12883773
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4885-94
pubmed: 27469163
PLoS Comput Biol. 2011 Mar;7(3):e1001110
pubmed: 21455283
J Neurosci Methods. 2014 Feb 15;223:50-68
pubmed: 24200508
J Neurosci. 2015 Jul 29;35(30):10888-97
pubmed: 26224870
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3869-E3878
pubmed: 29632213
Neuron. 2020 Jan 8;105(1):16-33
pubmed: 31917952
Nature. 2017 May 11;545(7653):219-223
pubmed: 28467827
J Neurophysiol. 2014 Sep 1;112(5):1131-41
pubmed: 24805077
J Neural Eng. 2017 Aug;14(4):046016
pubmed: 28504971
Neuroimage. 2008 Jul 1;41(3):767-76
pubmed: 18455441
Electroencephalogr Clin Neurophysiol. 1993 Jun;86(6):377-84
pubmed: 7686472
J Neurophysiol. 2017 Apr 1;117(4):1524-1543
pubmed: 28100654
Science. 2021 May 21;372(6544):831-836
pubmed: 34016775
Neuroimage. 2008 Jun;41(2):354-62
pubmed: 18394927
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17107-12
pubmed: 24082087
Front Hum Neurosci. 2011 Apr 25;5:40
pubmed: 21629859
Biol Cybern. 2001 Aug;85(2):145-57
pubmed: 11508777
Neuroimage. 2018 Dec;183:478-494
pubmed: 30036586
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9849-54
pubmed: 15210971
Elife. 2020 Jan 23;9:
pubmed: 31971510
Elife. 2017 May 03;6:
pubmed: 28467303
Sci Rep. 2019 Mar 25;9(1):5105
pubmed: 30911025
J Neurophysiol. 2013 Aug;110(4):817-25
pubmed: 23699057
Clin Neurophysiol. 2002 Feb;113(2):206-26
pubmed: 11856626
J Comp Neurol. 1985 Nov 22;241(4):445-66
pubmed: 4078042
Curr Opin Neurobiol. 2011 Aug;21(4):565-70
pubmed: 21696944
J Physiol. 2002 Jun 15;541(Pt 3):685-99
pubmed: 12068033
Front Comput Neurosci. 2017 Apr 04;11:17
pubmed: 28420975
Neuroimage. 2014 May 1;91:360-5
pubmed: 24440529
J Comp Neurol. 2019 Feb 15;527(3):718-737
pubmed: 29663384
Behav Brain Res. 2018 Jun 1;345:104-113
pubmed: 29486269
Nat Neurosci. 2006 May;9(5):690-6
pubmed: 16617339
Curr Opin Neurobiol. 2010 Apr;20(2):156-65
pubmed: 20359884
Trends Neurosci. 2011 Dec;34(12):611-8
pubmed: 22018805
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5083-8
pubmed: 27091982
Neuron. 2015 Jan 21;85(2):390-401
pubmed: 25556836
eNeuro. 2017 Aug 2;4(4):
pubmed: 28785729

Auteurs

Huy Cu (H)

School of Engineering, Brown University, Providence, RI, USA. huy_cu@brown.edu.

Laurie Lynch (L)

Department of Neuroscience, Brown University, Providence, RI, USA.

Kevin Huang (K)

Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Wilson Truccolo (W)

Department of Neuroscience, Brown University, Providence, RI, USA.
Carney Institute for Brain Science, Brown University, Providence, RI, USA.

Arto Nurmikko (A)

School of Engineering, Brown University, Providence, RI, USA. arto_nurmikko@brown.edu.
Carney Institute for Brain Science, Brown University, Providence, RI, USA. arto_nurmikko@brown.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH