Engineering Binders with Exceptional Selectivity.

Cell sorting Protein engineering Specificity Synthetic binding protein Yeast display

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 28 4 2022
pubmed: 29 4 2022
medline: 3 5 2022
Statut: ppublish

Résumé

Molecular display technologies have enabled the generation of synthetic binders with high affinities against a variety of antigens. However, engineering binders with high selectivity is still a challenging task. Here, we illustrate points to consider in developing highly selective binders against antigens of interest. We describe a systematic strategy for sorting selective binders using the yeast display technology. Using the approach described, our group has overcome molecular recognition challenges and developed a series of synthetic binders with exceptional selectivity against diverse antigens.

Identifiants

pubmed: 35482189
doi: 10.1007/978-1-0716-2285-8_8
doi:

Substances chimiques

Antigens 0
Peptide Library 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

143-154

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Carter PJ, Lazar GA (2018) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov 17(3):197–223. https://doi.org/10.1038/nrd.2017.227
doi: 10.1038/nrd.2017.227 pubmed: 29192287
Hutchings CJ, Koglin M, Olson WC, Marshall FH (2017) Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 16(9):787–810. https://doi.org/10.1038/nrd.2017.91
doi: 10.1038/nrd.2017.91 pubmed: 28706220
Vlot AHC, de Witte WEA, Danhof M, van der Graaf PH, van Westen GJP, de Lange ECM (2017) Target and tissue selectivity prediction by integrated mechanistic pharmacokinetic-target binding and quantitative structure activity modeling. AAPS J 20(1):11. https://doi.org/10.1208/s12248-017-0172-7
doi: 10.1208/s12248-017-0172-7 pubmed: 29204742
Zahnd C, Amstutz P, Pluckthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4(3):269–279. https://doi.org/10.1038/nmeth1003
doi: 10.1038/nmeth1003 pubmed: 17327848
Sidhu SS, Geyer CR (2015) Phage display in biotechnology and drug discovery. Drug discovery series, vol 14, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL
doi: 10.1201/b18196
Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316. https://doi.org/10.1146/annurev.biophys.37.092707.153558
doi: 10.1146/annurev.biophys.37.092707.153558 pubmed: 18573083 pmcid: 2443096
Xu Y, Roach W, Sun T, Jain T, Prinz B, Yu TY, Torrey J, Thomas J, Bobrowicz P, Vasquez M, Wittrup KD, Krauland E (2013) Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. Protein Eng Des Sel 26(10):663–670. https://doi.org/10.1093/protein/gzt047
doi: 10.1093/protein/gzt047 pubmed: 24046438
Teng KW, Tsai ST, Hattori T, Fedele C, Koide A, Yang C, Hou X, Zhang Y, Neel BG, O’Bryan JP, Koide S (2021) Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nat Commun 12(1):2656. https://doi.org/10.1038/s41467-021-22969-5
doi: 10.1038/s41467-021-22969-5 pubmed: 33976200 pmcid: 8113534
Hattori T, Koide A, Noval MG, Panchenko T, Romero LA, Teng KW, Tada T, Landau NR, Stapleford KA, Koide S (2021) The ACE2-binding interface of SARS-CoV-2 spike inherently deflects immune recognition. J Mol Biol 433(3):166748. https://doi.org/10.1016/j.jmb.2020.166748
doi: 10.1016/j.jmb.2020.166748 pubmed: 33310017
Hattori T, Taft JM, Swist KM, Luo H, Witt H, Slattery M, Koide A, Ruthenburg AJ, Krajewski K, Strahl BD, White KP, Farnham PJ, Zhao Y, Koide S (2013) Recombinant antibodies to histone post-translational modifications. Nat Methods 10(10):992–995. https://doi.org/10.1038/nmeth.2605
doi: 10.1038/nmeth.2605 pubmed: 23955773 pmcid: 3828030
Hattori T, Lai D, Dementieva IS, Montano SP, Kurosawa K, Zheng Y, Akin LR, Swist-Rosowska KM, Grzybowski AT, Koide A, Krajewski K, Strahl BD, Kelleher NL, Ruthenburg AJ, Koide S (2016) Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation. Proc Natl Acad Sci U S A 113(8):2092–2097. https://doi.org/10.1073/pnas.1522691113
doi: 10.1073/pnas.1522691113 pubmed: 26862167 pmcid: 4776465
Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O (2013) Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Proc Natl Acad Sci U S A 110(37):14924–14929. https://doi.org/10.1073/pnas.1303640110
doi: 10.1073/pnas.1303640110 pubmed: 23980151 pmcid: 3773763
La Sala G, Michiels C, Kukenshoner T, Brandstoetter T, Maurer B, Koide A, Lau K, Pojer F, Koide S, Sexl V, Dumoutier L, Hantschel O (2020) Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nat Commun 11(1):4115. https://doi.org/10.1038/s41467-020-17920-z
doi: 10.1038/s41467-020-17920-z pubmed: 32807795 pmcid: 7431413
Salzman GS, Zhang S, Gupta A, Koide A, Koide S, Arac D (2017) Stachel-independent modulation of GPR56/ADGRG1 signaling by synthetic ligands directed to its extracellular region. Proc Natl Acad Sci U S A 114(38):10095–10100. https://doi.org/10.1073/pnas.1708810114
doi: 10.1073/pnas.1708810114 pubmed: 28874577 pmcid: 5617296
Kukenshoner T, Schmit NE, Bouda E, Sha F, Pojer F, Koide A, Seeliger M, Koide S, Hantschel O (2017) Selective targeting of SH2 domain-phosphotyrosine interactions of Src family tyrosine kinases with monobodies. J Mol Biol 429(9):1364–1380. https://doi.org/10.1016/j.jmb.2017.03.023
doi: 10.1016/j.jmb.2017.03.023 pubmed: 28347651 pmcid: 5417323
Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94
doi: 10.1038/nprot.2006.94 pubmed: 17406305
Colby DW, Kellogg BA, Graff CP, Yeung YA, Swers JS, Wittrup KD (2004) Engineering antibody affinity by yeast surface display. Methods Enzymol 388:348–358. https://doi.org/10.1016/S0076-6879(04)88027-3
doi: 10.1016/S0076-6879(04)88027-3 pubmed: 15289082
Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23(4):155–159. https://doi.org/10.1093/protein/gzq002
doi: 10.1093/protein/gzq002 pubmed: 20130105
Hattori T, Koide A, Panchenko T, Romero LA, Teng KW, Corrado AD, Koide S (2021) Multiplex bead binding assays using off-the-shelf components and common flow cytometers. J Immunol Methods 490:112952. https://doi.org/10.1016/j.jim.2020.112952
doi: 10.1016/j.jim.2020.112952 pubmed: 33358997
Bergkessel M, Guthrie C (2013) Colony PCR. Methods Enzymol 529:299–309. https://doi.org/10.1016/B978-0-12-418687-3.00025-2
doi: 10.1016/B978-0-12-418687-3.00025-2 pubmed: 24011056

Auteurs

Kai Wen Teng (KW)

Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
Discovery Biologics, Merck & Co., Inc., Boston, MA, USA.

Akiko Koide (A)

Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
Department of Medicine, New York University School of Medicine, New York, NY, USA.

Shohei Koide (S)

Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA. Shohei.Koide@nyulangone.org.
Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA. Shohei.Koide@nyulangone.org.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH