Engineering Binders with Exceptional Selectivity.
Cell sorting
Protein engineering
Specificity
Synthetic binding protein
Yeast display
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
3
5
2022
Statut:
ppublish
Résumé
Molecular display technologies have enabled the generation of synthetic binders with high affinities against a variety of antigens. However, engineering binders with high selectivity is still a challenging task. Here, we illustrate points to consider in developing highly selective binders against antigens of interest. We describe a systematic strategy for sorting selective binders using the yeast display technology. Using the approach described, our group has overcome molecular recognition challenges and developed a series of synthetic binders with exceptional selectivity against diverse antigens.
Identifiants
pubmed: 35482189
doi: 10.1007/978-1-0716-2285-8_8
doi:
Substances chimiques
Antigens
0
Peptide Library
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
143-154Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Carter PJ, Lazar GA (2018) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov 17(3):197–223. https://doi.org/10.1038/nrd.2017.227
doi: 10.1038/nrd.2017.227
pubmed: 29192287
Hutchings CJ, Koglin M, Olson WC, Marshall FH (2017) Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 16(9):787–810. https://doi.org/10.1038/nrd.2017.91
doi: 10.1038/nrd.2017.91
pubmed: 28706220
Vlot AHC, de Witte WEA, Danhof M, van der Graaf PH, van Westen GJP, de Lange ECM (2017) Target and tissue selectivity prediction by integrated mechanistic pharmacokinetic-target binding and quantitative structure activity modeling. AAPS J 20(1):11. https://doi.org/10.1208/s12248-017-0172-7
doi: 10.1208/s12248-017-0172-7
pubmed: 29204742
Zahnd C, Amstutz P, Pluckthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4(3):269–279. https://doi.org/10.1038/nmeth1003
doi: 10.1038/nmeth1003
pubmed: 17327848
Sidhu SS, Geyer CR (2015) Phage display in biotechnology and drug discovery. Drug discovery series, vol 14, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL
doi: 10.1201/b18196
Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316. https://doi.org/10.1146/annurev.biophys.37.092707.153558
doi: 10.1146/annurev.biophys.37.092707.153558
pubmed: 18573083
pmcid: 2443096
Xu Y, Roach W, Sun T, Jain T, Prinz B, Yu TY, Torrey J, Thomas J, Bobrowicz P, Vasquez M, Wittrup KD, Krauland E (2013) Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. Protein Eng Des Sel 26(10):663–670. https://doi.org/10.1093/protein/gzt047
doi: 10.1093/protein/gzt047
pubmed: 24046438
Teng KW, Tsai ST, Hattori T, Fedele C, Koide A, Yang C, Hou X, Zhang Y, Neel BG, O’Bryan JP, Koide S (2021) Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nat Commun 12(1):2656. https://doi.org/10.1038/s41467-021-22969-5
doi: 10.1038/s41467-021-22969-5
pubmed: 33976200
pmcid: 8113534
Hattori T, Koide A, Noval MG, Panchenko T, Romero LA, Teng KW, Tada T, Landau NR, Stapleford KA, Koide S (2021) The ACE2-binding interface of SARS-CoV-2 spike inherently deflects immune recognition. J Mol Biol 433(3):166748. https://doi.org/10.1016/j.jmb.2020.166748
doi: 10.1016/j.jmb.2020.166748
pubmed: 33310017
Hattori T, Taft JM, Swist KM, Luo H, Witt H, Slattery M, Koide A, Ruthenburg AJ, Krajewski K, Strahl BD, White KP, Farnham PJ, Zhao Y, Koide S (2013) Recombinant antibodies to histone post-translational modifications. Nat Methods 10(10):992–995. https://doi.org/10.1038/nmeth.2605
doi: 10.1038/nmeth.2605
pubmed: 23955773
pmcid: 3828030
Hattori T, Lai D, Dementieva IS, Montano SP, Kurosawa K, Zheng Y, Akin LR, Swist-Rosowska KM, Grzybowski AT, Koide A, Krajewski K, Strahl BD, Kelleher NL, Ruthenburg AJ, Koide S (2016) Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation. Proc Natl Acad Sci U S A 113(8):2092–2097. https://doi.org/10.1073/pnas.1522691113
doi: 10.1073/pnas.1522691113
pubmed: 26862167
pmcid: 4776465
Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O (2013) Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Proc Natl Acad Sci U S A 110(37):14924–14929. https://doi.org/10.1073/pnas.1303640110
doi: 10.1073/pnas.1303640110
pubmed: 23980151
pmcid: 3773763
La Sala G, Michiels C, Kukenshoner T, Brandstoetter T, Maurer B, Koide A, Lau K, Pojer F, Koide S, Sexl V, Dumoutier L, Hantschel O (2020) Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nat Commun 11(1):4115. https://doi.org/10.1038/s41467-020-17920-z
doi: 10.1038/s41467-020-17920-z
pubmed: 32807795
pmcid: 7431413
Salzman GS, Zhang S, Gupta A, Koide A, Koide S, Arac D (2017) Stachel-independent modulation of GPR56/ADGRG1 signaling by synthetic ligands directed to its extracellular region. Proc Natl Acad Sci U S A 114(38):10095–10100. https://doi.org/10.1073/pnas.1708810114
doi: 10.1073/pnas.1708810114
pubmed: 28874577
pmcid: 5617296
Kukenshoner T, Schmit NE, Bouda E, Sha F, Pojer F, Koide A, Seeliger M, Koide S, Hantschel O (2017) Selective targeting of SH2 domain-phosphotyrosine interactions of Src family tyrosine kinases with monobodies. J Mol Biol 429(9):1364–1380. https://doi.org/10.1016/j.jmb.2017.03.023
doi: 10.1016/j.jmb.2017.03.023
pubmed: 28347651
pmcid: 5417323
Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94
doi: 10.1038/nprot.2006.94
pubmed: 17406305
Colby DW, Kellogg BA, Graff CP, Yeung YA, Swers JS, Wittrup KD (2004) Engineering antibody affinity by yeast surface display. Methods Enzymol 388:348–358. https://doi.org/10.1016/S0076-6879(04)88027-3
doi: 10.1016/S0076-6879(04)88027-3
pubmed: 15289082
Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23(4):155–159. https://doi.org/10.1093/protein/gzq002
doi: 10.1093/protein/gzq002
pubmed: 20130105
Hattori T, Koide A, Panchenko T, Romero LA, Teng KW, Corrado AD, Koide S (2021) Multiplex bead binding assays using off-the-shelf components and common flow cytometers. J Immunol Methods 490:112952. https://doi.org/10.1016/j.jim.2020.112952
doi: 10.1016/j.jim.2020.112952
pubmed: 33358997
Bergkessel M, Guthrie C (2013) Colony PCR. Methods Enzymol 529:299–309. https://doi.org/10.1016/B978-0-12-418687-3.00025-2
doi: 10.1016/B978-0-12-418687-3.00025-2
pubmed: 24011056