Biocontrol potential of Burkholderia sp. BV6 against the rice blast fungus Magnaporthe oryzae.
Burkholderia
antifungal activity
biocontrol
rice blast
secondary metabolites
Journal
Journal of applied microbiology
ISSN: 1365-2672
Titre abrégé: J Appl Microbiol
Pays: England
ID NLM: 9706280
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
22
03
2022
accepted:
28
04
2022
pubmed:
3
5
2022
medline:
10
8
2022
entrez:
2
5
2022
Statut:
ppublish
Résumé
To investigate the broad-spectrum antifungal activity of Burkholderia sp. BV6, that is isolated from rice roots and its biocontrol potential against rice blast caused by Magnaporthe oryzae. We evaluated the ability to isolate BV6 in the biological control of rice blast disease and investigated its antifungal mechanisms. BV6 strongly inhibited the hyphal growth of M. oryzae Guy11 and other plant pathogenic fungi, and pot experiments showed that BV6 significantly decreases the disease index of rice blast from 47.5 to 24.6. The secreted small-molecule secondary metabolites were regarded as weapons during the antifungal process by inhibiting the germination of M. oryzae conidia and mycelial growth, and thereby prevent the following infection. Liquid chromatography-mass spectrometry analysis of the metabolites from the supernatant of isolate BV6 showed that the antifungal weapons of isolate BV6 are novel, small, molecular hydrophilic compounds that are different from reported antifungal compounds. The isolate BV6 inhibits the M. oryzae infection by the production of small-molecule antifungal compounds. The current study discovers the role of the Burkholderia sp. BV6 in the biocontrol of plant pathogenic fungi. Therefore, isolate BV6 is a potential candidate for developing a microbial formulation for the biocontrol of the most common disease of rice blast.
Substances chimiques
Antifungal Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
883-897Subventions
Organisme : Fundamental Research Funds for the Central Universities
ID : KYZZ2022001
Organisme : Key Research & Development Plan of Jiangsu Province
ID : BE2020340
Organisme : National Science and Technology Major Project
ID : 2020ZX08009-04B
Organisme : Natural Science Foundation of China
ID : 32070027
Organisme : Natural Science Foundation of China
ID : 32170123
Organisme : Natural Science Foundation of China
ID : 32000101
Informations de copyright
© 2022 Society for Applied Microbiology.
Références
Ahmad, T., Bashir, A., Farooq, S. & Riyaz-Ul-Hassan, S. (2022) Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. Journal of Applied Microbiology, 132, 495-508.
Ahmadikhah, A. (2009) A rapid mini-prep DNA extraction method in rice (Oryza sativa). African Journal of Biotechnology, 8, 323-327.
Ali, S.S. & Vidhale, N.N. (2013) Bacterial siderophore and their application: a review. International Journal of Current Microbiology and Applied Sciences, 2, 303-312.
Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.-C. & García-Río, L. (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture Ecosystems & Environment, 123, 247-260.
Arriel-Elias, M.T., de Carvalho Barros Côrtes, M.V., de Sousa, T.P., Chaibub, A.A. & de Filippi, M.C.C. (2019) Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113. Environemental Science and Pollution Research, 26, 19705-19718.
Azabou, M.C., Gharbi, Y., Medhioub, I., Ennouri, K., Barham, H., Tounsi, S. et al. (2020) The endophytic strain Bacillus velezensis OEE1: an efficient biocontrol agent against verticillium wilt of olive and a potential plant growth promoting bacteria. Biological Control, 142, 104168.
Blin, K., Wolf, T., Chevrette, M.G., Lu, X., Schwalen, C.J., Kautsar, S.A. et al. (2017) antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research, 45, W36-W41.
Cabot, C., Bosch, R., Martos, S., Poschenriederc, C. & Perelló, A. (2018) Salinity is a prevailing factor for amelioration of wheat blast by biocontrol agents. Biological Control, 125, 81-89.
Cartwright, D.K., Chilton, W.S. & Benson, D.M. (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Applied Microbiology and Biotechnology, 43, 211-216.
Chung, H., Goh, J., Han, S.-S., Roh, J.-H., Kim, Y., Heu, S. et al. (2020) Comparative pathogenicity and host ranges of Magnaporthe oryzae and related species. Plant Pathology Journal, 36, 305-313.
de los Santos-Villalobos, S., Barrera-Galicia, G.C., Miranda-Salcedo, M.A. & Peña-Cabriales, J.J. (2012) Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World Journal of Microbiology and Biotechnology, 28, 2615-2623.
Delcher, A.L., Bratke, K.A., Powers, E.C. & Salzberg, S.L. (2007) Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics, 23, 673-679.
Doehlemann, G., Ökmen, B., Zhu, W. & Sharon, A. (2017) Plant pathogenic fungi. Microbiology Spectrum, 5, 703-726.
Ebbole, D.J. (2007) Magnaporthe as a model for understanding host-pathogen interactions. Annual Review of Phytopathology, 45, 437-456.
Eljounaidi, K., Lee, S.K. & Bae, H. (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases - review and future prospects. Biological Control, 103, 62-68.
Elshafie, H.S., Camele, I., Racioppi, R., Scrano, L., Iacobellis, N.S. & Bufo, S.A. (2012) In vitro antifungal activity of Burkholderia gladioli pv. Agaricicola against some phytopathogenic fungi. International Journal of Molecular Sciences, 13, 16291-16302.
Furter, R. & Rast, D.M. (1985) A comparison of the chitin synthase-inhibitory and antifungal efficacy of nucleoside-peptide antibiotics: structure-activity relationships. FEMS Microbiology Letters, 28, 205-211.
Galhano, R. & Talbot, N.J. (2011) The biology of blast: understanding how Magnaporthe oryzae invades rice plants. Fungal Biology Reviews, 25, 61-67.
Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S. et al. (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. Journal of Chemical Ecology, 39, 892-906.
Guo, M., Guo, W., Chen, Y., Dong, S., Zhang, X., Zhang, H. et al. (2010) The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 23, 1053-1068.
Jackman, S.D., Vandervalk, B.P., Mohamadi, H., Chu, J., Yeo, S., Austin Hammond, S. et al. (2017) ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Research, 27, 768-777.
Jung, B.K., Hong, S.J., Park, G.S., Kim, M.C. & Shin, J.H. (2018) Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Applied Biological Chemistry, 61, 173-180.
Kang, J.G., Shin, S.Y., Kim, M.J., Bajpai, V., Maheshwari, D.K. & Kang, S.C. (2004) Isolation and anti-fungal activities of 2-hydroxymethyl-chroman-4-one produced by Burkholderia sp. MSSP. Journal of Antibiotics, 57, 726-731.
Kurniawan, O., Wilson, K., Mohamed, R. & Avis, T.J. (2018) Bacillus and Pseudomonas spp. provide antifungal activity against gray mold and Alternaria rot on blueberry fruit. Biological Control, 126, 136-141.
Lau, E.T., Tani, A., Khew, C.Y., Chua, Y.Q. & Hwang, S.S. (2020) Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 240, 126549.
Lemtukei, D., Tamura, T., Nguyen, Q.T. & Ueno, M. (2017) Inhibitory activity of Burkholderia sp. isolated from soil in Gotsu city, Shimane, against Magnaporthe oryzae. Advances in Microbiology, 7, 137-148.
Li, Z., Ye, X., Liu, M., Xia, C., Zhang, L., Luo, X. et al. (2019) A novel outer membrane β-1,6-glucanase is deployed in the predation of fungi by myxobacteria. The ISME Journal, 13, 2223-2235.
Liu, A., Zhang, P., Bai, B., Bai, F., Jin, T. & Ren, J. (2020) Volatile organic compounds of endophytic Burkholderia pyrrocinia strain JK-SH007 promote disease resistance in poplar. Plant Disease, 104, 1610-1620.
Liu, X., Bao, T., Zheng, L., Kgosi, V.T., Liu, X. & Liu, H. (2021) Cell wall integrity in Magnaporthe oryzae is weakened by proteins secreted by Bacillus licheniformis BL06. Biological Control, 157, 104582.
Mahenthiralingam, E., Bischof, J., Byrne, S.K., Radomski, C., Davies, J.E., Av-Gay, Y. et al. (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. Journal of Clinical Microbiology, 38, 3165-3173.
Melo, J., Carolino, M., Carvalho, L., Correia, P., Tenreiro, R., Chaves, S. et al. (2016) Crop management as a driving force of plant growth promoting rhizobacteria physiology. Springerplus, 5, 1574.
Nalley, L., Tsiboe, F., Durand-Morat, A., Shew, A. & Thoma, G. (2016) Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS One, 11, e0167295.
Ren, J.H., Ye, J.R., Liu, H., Xu, X.L. & Wu, X.Q. (2011) Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent. World Journal of Microbiology and Biotechnology, 27, 2203-2215.
Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z. et al. (2013) Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Protection, 44, 29-37.
Sharma, R., Gate, V.L. & Madhavan, S. (2018) Evaluation of fungicides for the management of pearl millet [Pennisetum glaucum (L.)] blast caused by Magnaporthe grisea. Crop Protection, 112, 209-213.
Sheoran, N., Valiya Nadakkakath, A., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V. et al. (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological Research, 173, 66-78.
Shimosaka, M., Fukumori, Y., Narita, T., Zhang, X., Kodaira, R., Nogawa, M. et al. (2001) The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. Journal of Bioscience and Bioengineering, 91, 103-105.
Sijam, K. & Dikin, A. (2005) Biochemical and physiological characterization of Burkholderia cepacia as biological control agent. International Journal of Agriculture and Biology, 7, 385-388.
Skamnioti, P. & Gurr, S.J. (2009) Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology, 27, 141-150.
Tawfik, K.A., Jeffs, P., Bray, B., Dubay, G., Falkinham, J.O., III, Mesbah, M. et al. (2010) Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Organic Letters, 12, 664-666.
Tokpah, D.P., Li, H., Wang, L., Liu, X., Mulbah, Q.S. & Liu, H. (2016) An assessment system for screening effective bacteria as biological control agents against Magnaporthe grisea on rice. Biological Control, 103, 21-29.
Valent, B., Farrall, L. & Chumley, F.G. (1991) Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics, 127, 87-101.
Wang, X.Q., Liu, A.X., Guerrero, A., Liu, J., Yu, X.Q., Deng, P. et al. (2016) Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2. Journal of Applied Microbiology, 120, 607-618.
Wei, Y., Li, L., Hu, W., Ju, H., Zhang, M., Qin, Q. et al. (2020) Suppression of rice blast by bacterial strains isolated from cultivated soda saline-sodic soils. Interrnational Journal of Environmental Research and Public Health, 17, 5248.
Wu, L., Xiao, W., Chen, G., Song, D., Khaskheli, M.A., Li, P. et al. (2018) Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of rice blast fungus Magnaporthe oryzae. Journal of Biotechnology, 282, 1-9.
Xin, W.J., Mao, Y.S., Lu, F., Li, T., Wang, J.X., Duan, Y.B. et al. (2020) In vitro fungicidal activity and in planta control efficacy of coumoxystrobin against Magnaporthe oryzae. Pesticide Biochemistry and Physiology, 162, 78-85.
Xiong, J.S., Ding, J. & Li, Y. (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research, 2, 15019.
Ye, X., Chen, Y., Ma, S., Yuan, T., Wu, Y., Li, Y. et al. (2020) Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiology, 91, 103502.
Zhao, M., Xing, Y., Liu, L., Fan, X., Liu, L., Geng, T. et al. (2020) GC-TOF-MS-based metabolomics analyses of liver and intestinal contents in the overfed vs. normally-fed geese. Animals, 10, 2375.
Zhou, S., Liu, G., Zheng, R., Sun, C. & Wu, S. (2020) Structural and functional insights of iturin W, a novel lipopeptide produced by the deep-sea bacterium Bacillus sp. wsm-1. Applied Environmental Microbiology, 86, e01597-20.