Improvement of beauvericin production by Fusarium oxysporum AB2 under solid-state fermentation using an optimised liquid medium and co-cultures.
Beauvericin
Co-culture
Epicoccum nigrum
Fusarium oxysporum
Solid-state fermentation
Journal
Mycotoxin research
ISSN: 1867-1632
Titre abrégé: Mycotoxin Res
Pays: Germany
ID NLM: 8807334
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
06
08
2021
accepted:
15
04
2022
revised:
14
04
2022
pubmed:
3
5
2022
medline:
10
8
2022
entrez:
2
5
2022
Statut:
ppublish
Résumé
The production of beauvericin (BEA) by Fusarium oxysporum AB2 in liquid medium (SmF) was compared to that on solid medium (SSF) on inert support (polyurethane foam or PUF), using a previously optimised medium. The analysis included two different concentrations of the medium (1 × and 3 ×). Under SSF, the production of BEA (22.8 mg·L
Identifiants
pubmed: 35501595
doi: 10.1007/s12550-022-00458-y
pii: 10.1007/s12550-022-00458-y
doi:
Substances chimiques
Depsipeptides
0
beauvericin
26S048LS2R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
175-183Subventions
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : 745861
Informations de copyright
© 2022. The Author(s) under exclusive licence to Society for Mycotoxin (Research Gesellschaft für Mykotoxinforschung e.V.) and Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abdeljalil S, Saibi W, Ben Hmad I, Baklouti A, Ben Mahmoud F, Belghith H, Gargouri A (2014) Improvement of cellulase and xylanase production by solid-state fermentation of Stachybotrys microspora. Biotechnol Appl Bioc 61(4):432–440. https://doi.org/10.1002/bab.1195
doi: 10.1002/bab.1195
Ancheeva E, Küppers L, Akone SH, Ebrahim W, Liu Z, Mándi A, Kurtán T, Lin W, Orfali R, Rehberg N, Kalscheuer R, Daletos G, Proksch P (2017) Expanding the metabolic profile of the fungus Chaetomium sp. Through co-culture with autoclaved Pseudomonas aeruginosa. Eur J Org Chem 22:3256–3264. https://doi.org/10.1002/ejoc.201700288
doi: 10.1002/ejoc.201700288
Baños JG, Tomasini A, Szakács G, Barrios-González J (2009) High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108(2):105–110. https://doi.org/10.1016/j.jbiosc.2009.03.006
doi: 10.1016/j.jbiosc.2009.03.006
pubmed: 19619855
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32(6):1180–1204. https://doi.org/10.1016/j.biotechadv.2014.03.001
doi: 10.1016/j.biotechadv.2014.03.001
pubmed: 24651031
Buenrostro-Figueroa J, Ascacio-Valdés A, Sepúlveda L, Prado-Barragán A, Aguilar-González MA, Aguilar CN (2018) Ellagic acid production by solid-state fermentation influenced by the inert solid supports. Emir J Food Agr 30(9):750–757. https://doi.org/10.9755/ejfa.2018.v30.i9.1796
doi: 10.9755/ejfa.2018.v30.i9.1796
Chagas FO, Dias LG, Pupo MT (2013) A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol 39(10):1335–1342. https://doi.org/10.1007/s10886-013-0351-7
doi: 10.1007/s10886-013-0351-7
pubmed: 24114180
Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188. https://doi.org/10.1016/j.rser.2015.07.092
doi: 10.1016/j.rser.2015.07.092
Garcia-Ortiz N, Tlecuitl-Beristain S, Favela-Torres E, Loera O (2015) Production and quality of conidia by Metarhizium anisopliae var. lepidiotum: Critical oxygen level and period of mycelium competence. Appl Microbiol Biot 99(6):2783–2791. https://doi.org/10.1007/s00253-014-6225-2
Gonçalves HB, Jorge JA, Guimaraes LHS (2016) Production and characterization of an extracelular β-D-fructofuranosidase from Fusarium graminearum during solid-state fermentation using wheat bran as a carbon source. J Food Biochem 40:655–663. https://doi.org/10.1111/jfbc.12253
doi: 10.1111/jfbc.12253
Jain A, Morlok CK, Henson JM (2013) Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans. Appl Microbiol Biotechnol 97:905–917. https://doi.org/10.1007/s00253-012-4511-4
doi: 10.1007/s00253-012-4511-4
pubmed: 23111595
Jensen BD, Knorr K, Nicolaisen M (2016) In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains. Eur J Plant Pathol 146(3):657–670. https://doi.org/10.1007/s10658-016-0950-6
doi: 10.1007/s10658-016-0950-6
Jestoi M, Rokka M, Peltonen K (2007) An integrated sample preparation to determine coccidiostats and emerging Fusarium-mycotoxins in various poultry tissues with LC-MS/MS. Mol Nutr Food Res 51(5):625–637. https://doi.org/10.1002/mnfr.200600232
doi: 10.1002/mnfr.200600232
pubmed: 17440994
Jiang X, Cheng YJ, Shi LG (2013) Determination of Fusarium mycotoxin beauvericin in Bombyx batryticatus by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Asian J Chem 25:6693–6696. https://doi.org/10.14233/ajchem.2013.14424
Juan C, de Simone G, Sagratini G, Caprioli G, Mañes J, Juan-García A (2020) Reducing the effect of beauvericin on neuroblastoma SH-SY5Y cell line by natural products. Toxicon 188:164–171. https://doi.org/10.1016/j.toxicon.2020.10.017
doi: 10.1016/j.toxicon.2020.10.017
pubmed: 33164869
Lee H, Song H, Ahn J, Shin C, Lee G, Lee C (2008) Statistical optimization of growth medium for the production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin from Fusarium oxysporum KFCC 11363P. J Microbiol Biotechnol 18(1):138–144
pubmed: 18239431
Lima-Pérez J, Rodríguez-Gómez D, Loera O, Viniegra-González G, López-Pérez M (2017) Differences in growth physiology and aggregation of Pichia pastoris cells between solid-state and submerged fermentations under aerobic conditions. J Chem Technol Biotechnol 93:527–532. https://doi.org/10.1002/jctb.5384
doi: 10.1002/jctb.5384
Liuzzi VC, Mirabelli V, Cimmarusti MT, Haidukowski M, Leslie JF, Logrieco AF, Caliandro R, Fancesca F, Mule G (2017) Enniatin and beauvericin biosynthesis in Fusarium species: production profiles and structural determinant prediction. Toxins 9:45. https://doi.org/10.3390/toxins9020045
doi: 10.3390/toxins9020045
pmcid: 5331425
Logrieco A, Rizzo A, Ferracane R, Ritieni A (2002) Ocurrence of Beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Appl Environ Microbiol 68:82–85. https://doi.org/10.1128/AEM.68.1.82-85.2002
doi: 10.1128/AEM.68.1.82-85.2002
pubmed: 11772612
pmcid: 126553
Lorenzini M, Zapparoli G (2015) Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration. Antonie Van Leeuwenhoek 108(5):1171–1180. https://doi.org/10.1007/s10482-015-0570-8
doi: 10.1007/s10482-015-0570-8
pubmed: 26459338
Matthes D, Richter L, Müller J, Denisiuk A, Feifel SC, Xu Y, Espinosa-Artiles P, Süssmuth RD, Molnár I (2012) In vitro chemoenzymatic and in vivo biocatalytic syntheses of new beauvericina analogues. Chem Commun 48:4674–5676. https://doi.org/10.1039/C2CC31669B
doi: 10.1039/C2CC31669B
Meca G, Sospedra L, Soriano JM, Ritiene A, Moretti A, Mañes J (2010) Antibacterial effect of the bioactive compound beauvericin produced by Fusarium proliferatum on solid medium of wheat. Toxicon 56:349–354. https://doi.org/10.1016/j.toxicon.2010.03.022
doi: 10.1016/j.toxicon.2010.03.022
pubmed: 20371252
Moretti A, Mulé G, Ritieni A, Láday M, Stubnya V, Hornok L, Logrieco A (2008) Cryptic subspecies and beauvericin production by Fusarium subglutinans from Europe. Int J Food Microbiol 127(3):312–315. https://doi.org/10.1016/j.ijfoodmicro.2008.08.003
doi: 10.1016/j.ijfoodmicro.2008.08.003
pubmed: 18804303
Moussa M, Ebrahim W, Kalscheuer R, Liu Z, Proksch P (2020) Co-culture of the bacterium Pseudomonas aeruginosa with the fungus Fusarium tricinctum induces bacterial antifungal and quorum sensing signaling molecules. Phytochem Lett 36:37–41. https://doi.org/10.1016/j.phytol.2020.01.013
doi: 10.1016/j.phytol.2020.01.013
Nagavalli M, Ponamgi SPD, Girijashankar V, Rao V (2015) Solid state fermentation and production of Rifamycin SV using Amycolatopsis mediterranei. Lett Appl Microbiol 60:44–51. https://doi.org/10.1111/lam.12332
doi: 10.1111/lam.12332
pubmed: 25256628
Oliveira F, Moreira C, Salgado JM, Abrunhosa L, Venâncio A, Belo I (2016) Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation. SCI 96:3583–3589. https://doi.org/10.1002/jsfa.7544
doi: 10.1002/jsfa.7544
Palyzová A, Svobodová K, Sokolová L, Novák J, Novotný Č (2019) Metabolic profiling of Fusarium oxysporum f. sp. conglutinans race 2 in dual cultures with biocontrol agents Bacillus amyloliquefaciens, Pseudomonas aeruginosa, and Trichoderma harzianum. Folia Microbiol 64(6):779–787. https://doi.org/10.1007/s12223-019-00690-7
Pérez-Sánchez A, Uríbe-Carvajal S, Cabrera-Orefice A, Barrios-González J (2017) Key role of alternative oxidase in lovastatin solid-state fermentation. Appl Microbiol Biotechnol 101:7347–7356. https://doi.org/10.1007/s00253-017-8452-9
doi: 10.1007/s00253-017-8452-9
pubmed: 28791446
Rachmawati R, Kinoshita H, Nihira T (2018) Production of insect toxin beauvericin from entomopathogenic fungi Cordyceps militaris by heterologous expression of global regulator. Agrivita 40(1):177–184. https://doi.org/10.17503/agrivita.v40i1.1727
Ruiz-Leza HA, Rodríguez-Jasso RM, Rodríguez-Herrera JC, Contreras-Esquivel JC, Aguilar CN (2007) Diseño de biorreactores para fermentación en medio sólido. Rev Mex Ing Quim 6(1):33–40
Serrano AB, Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Ventura S, Laganà A (2015) Development of a rapid LC-MS/MS method for the determination of emerging Fusarium mycotoxins enniatins and beauvericin in human biological fluids. Toxins 7(9):3554–3571. https://doi.org/10.3390/toxins7093554
doi: 10.3390/toxins7093554
pmcid: 4591648
Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. https://doi.org/10.1016/j.bej.2008.10.019
doi: 10.1016/j.bej.2008.10.019
Song P, Huang B, Zhang S, Zhang K, Yuan K, Ji X, Ren L, Wen J, Huang H (2018) Novel osmotic stress control strategy for improved pneumocandin B0 production in Glarea lozoyensis combined with a mechanistic analysis at the transcriptome level. Appl Microbiol Biotechnol 102(24):10729–10742. https://doi.org/10.1007/s00253-018-9440-4
doi: 10.1007/s00253-018-9440-4
pubmed: 30413850
Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew chem (International Ed. in English) 56(14):3770–3821. https://doi.org/10.1002/anie.201609079
Téllez-Jurado A, Arana-Cuenca A, González-Becerra AE, Viniegra-González G, Loera O (2006) Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzime Microb Technol 38:665–669. https://doi.org/10.1016/j.enzmictec.2005.07.021
doi: 10.1016/j.enzmictec.2005.07.021
Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161. https://doi.org/10.1016/j.bej.2013.10.013
doi: 10.1016/j.bej.2013.10.013
Tuiche MV, Lopes AA, Silva DB, Lopes NP, Pupo MT (2014) Direct MALDI-TOF/TOF analyses of unnatural beauvericins produced by the endophytic fungus Fusarium oxysporum SS46. Rev Bras Farmacogn 24(4):433–438. https://doi.org/10.1016/j.bjp.2014.06.002
doi: 10.1016/j.bjp.2014.06.002
Urbaniak M, Stępień Ł, Uhlig S (2019) Evidence for naturally produced beauvericins containing N -Methyl-Tyrosine in Hypocreales fungi. Toxins 11(3). https://doi.org/10.3390/toxins11030182
Vásquez-Bonilla JN, Cabrera-Vega EJ, Vázquez-Olvera JI, Gutiérrez-Nava MA, Hurtado- y de la Peña M, Barranco-Florido JE (2017) Actividad biológica de la micotoxina beauvericina en células cancerosas. Rev Mex Ciencias Farmacéuticas 48(4):16–26
Vendruscolo F, Bühler R, Carvalho J, Oliveira D, Moritz D, Schmidell W, Ninow J (2016) Monascus: a reality on the production and application of microbial pigments. Appl Biochem Biotechnol 178(2):211–223. https://doi.org/10.1007/s12010-015-1880-z
doi: 10.1007/s12010-015-1880-z
pubmed: 26472672
Wang JP, Debbab A, Hemphill CFP, Proksch P (2013) Optimization of enniatin production by solid-phase fermentation of Fusarium tricinctum. Z Naturforsch 68:223–230. https://doi.org/10.1515/znc-2013-5-608
doi: 10.1515/znc-2013-5-608
Wang Q, Xu L (2012) Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367–2377. https://doi.org/10.3390/molecules17032367
doi: 10.3390/molecules17032367
pubmed: 22367030
pmcid: 6269041
Wu J, Yang B, Xu J, Cuthbertson AGS, Ali S (2021) Characterization and toxicity of crude toxins produced by Cordyceps fumosorosea against Bemisia tabaci (Gennadius) and Aphis craccivora (Koch). Toxins 13(3). https://doi.org/10.3390/toxins13030220
Xu LJ, Liu YS, Zhonu LG, Wu JY (2009) Enhanced beauvericin production with in situ adsorption in mycelial liquid culture of Fusarium redolens Dzf2. Process Biochem 44:1063–1067. https://doi.org/10.1016/j.procbio.2009.05.004
doi: 10.1016/j.procbio.2009.05.004
Xu LJ, Liu YS, Zhou LG, Wu JY (2010) Optimization of a liquid medium for beauvericin production in Fusarium redolens Dzf2 mycelial culture. Biotechnol Bioprocess Eng 15:460–466. https://doi.org/10.1007/s12257-009-3031-2
doi: 10.1007/s12257-009-3031-2
Xu Y, Zhan J, Wijeratne EMK, Burns AM, Gunatilaka AAL, Molnár I (2007) Cytotoxic and antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159. J Nat Prod 70:1467–1471. https://doi.org/10.1021/np070262f
doi: 10.1021/np070262f
pubmed: 17803266
Yin M, Xiao D, Wang C, Zhang L, Dun B, Yue Q (2022) The regulation of BbLaeA on the production of beauvericin and bassiatin in Beauveria bassiana. World J of Microbiol Biotechnol 38(1). https://doi.org/10.1007/s11274-021-03162-8
Zobel S, Boecker S, Kulke D, Heimbach D, Meyer V, Süssmuth RD (2016) Reprogramming the biosynthesis of cyclodepsipeptide synthetases to obtain new enniatins and beauvericins. Chem Bio Chem 17:283–287. https://doi.org/10.1002/cbic.201500649
doi: 10.1002/cbic.201500649
pubmed: 26663099