Melanin biopolymer synthesis using a new melanogenic strain of Flavobacterium kingsejongi and a recombinant strain of Escherichia coli expressing 4-hydroxyphenylpyruvate dioxygenase from F. kingsejongi.
4-Hydroxyphenylpyruvate dioxygenase
Flavobacterium kingsejongi
Melanin
Journal
Microbial cell factories
ISSN: 1475-2859
Titre abrégé: Microb Cell Fact
Pays: England
ID NLM: 101139812
Informations de publication
Date de publication:
02 May 2022
02 May 2022
Historique:
received:
07
09
2021
accepted:
20
04
2022
entrez:
3
5
2022
pubmed:
4
5
2022
medline:
6
5
2022
Statut:
epublish
Résumé
Melanins are a heterologous group of biopolymeric pigments synthesized by diverse prokaryotes and eukaryotes and are widely utilized as bioactive materials and functional polymers in the biotechnology industry. Here, we report the high-level melanin production using a new melanogenic Flavobacterium kingsejongi strain and a recombinant Escherichia coli overexpressing F. kingsejongi 4-hydroxyphenylpyruvate dioxygenase (HPPD). Melanin synthesis of F. kingsejongi strain was confirmed via melanin synthesis inhibition test, melanin solubility test, genome analysis, and structural analysis of purified melanin from both wild-type F. kingsejongi and recombinant E. coli expressing F. kingsejongi HPPD. The activity of F. kingsejongi HPPD was demonstrated via in vitro assays with 6 × His-tagged and native forms of HPPD. The specific activity of F. kingsejongi HPPD was 1.2 ± 0.03 μmol homogentisate/min/mg-protein. Bioreactor fermentation of F. kingsejongi produced a large amount of melanin with a titer of 6.07 ± 0.32 g/L, a conversion yield of 60% (0.6 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.03 g/L·h, indicating its potential for industrial melanin production. Additionally, bioreactor fermentation of recombinant E. coli expressing F. kingsejongi HPPD produced melanin at a titer of 3.76 ± 0.30 g/L, a conversion yield of 38% (0.38 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.04 g/L·h. Both strains showed sufficiently high fermentation capability to indicate their potential as platform strains for large-scale bacterial melanin production. Furthermore, F. kingsejongi strain could serve as a model to elucidate the regulation of melanin biosynthesis pathway and its networks with other cellular pathways, and to understand the cellular responses of melanin-producing bacteria to environmental changes, including nutrient starvation and other stresses.
Sections du résumé
BACKGROUND
BACKGROUND
Melanins are a heterologous group of biopolymeric pigments synthesized by diverse prokaryotes and eukaryotes and are widely utilized as bioactive materials and functional polymers in the biotechnology industry. Here, we report the high-level melanin production using a new melanogenic Flavobacterium kingsejongi strain and a recombinant Escherichia coli overexpressing F. kingsejongi 4-hydroxyphenylpyruvate dioxygenase (HPPD).
RESULTS
RESULTS
Melanin synthesis of F. kingsejongi strain was confirmed via melanin synthesis inhibition test, melanin solubility test, genome analysis, and structural analysis of purified melanin from both wild-type F. kingsejongi and recombinant E. coli expressing F. kingsejongi HPPD. The activity of F. kingsejongi HPPD was demonstrated via in vitro assays with 6 × His-tagged and native forms of HPPD. The specific activity of F. kingsejongi HPPD was 1.2 ± 0.03 μmol homogentisate/min/mg-protein. Bioreactor fermentation of F. kingsejongi produced a large amount of melanin with a titer of 6.07 ± 0.32 g/L, a conversion yield of 60% (0.6 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.03 g/L·h, indicating its potential for industrial melanin production. Additionally, bioreactor fermentation of recombinant E. coli expressing F. kingsejongi HPPD produced melanin at a titer of 3.76 ± 0.30 g/L, a conversion yield of 38% (0.38 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.04 g/L·h.
CONCLUSIONS
CONCLUSIONS
Both strains showed sufficiently high fermentation capability to indicate their potential as platform strains for large-scale bacterial melanin production. Furthermore, F. kingsejongi strain could serve as a model to elucidate the regulation of melanin biosynthesis pathway and its networks with other cellular pathways, and to understand the cellular responses of melanin-producing bacteria to environmental changes, including nutrient starvation and other stresses.
Identifiants
pubmed: 35501871
doi: 10.1186/s12934-022-01800-w
pii: 10.1186/s12934-022-01800-w
pmc: PMC9063278
doi:
Substances chimiques
Biopolymers
0
Melanins
0
Tyrosine
42HK56048U
4-Hydroxyphenylpyruvate Dioxygenase
EC 1.13.11.27
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
75Subventions
Organisme : National Research Foundation of Korea
ID : 2020M3H7A1098288
Organisme : National Research Foundation of Korea
ID : 2020M3A9I5037889
Organisme : National Research Foundation of Korea
ID : 2019R1A6A11051471
Informations de copyright
© 2022. The Author(s).
Références
FEMS Microbiol Lett. 1997 Aug 15;153(2):265-72
pubmed: 9271852
J Mol Evol. 1981;17(6):368-76
pubmed: 7288891
Mol Biol Evol. 1987 Jul;4(4):406-25
pubmed: 3447015
PLoS One. 2015 Mar 20;10(3):e0120923
pubmed: 25793756
Mol Biol Evol. 2011 Oct;28(10):2731-9
pubmed: 21546353
Front Bioeng Biotechnol. 2019 Oct 24;7:285
pubmed: 31709247
Int J Syst Evol Microbiol. 2018 Mar;68(3):911-916
pubmed: 29458488
J Bacteriol. 1994 Sep;176(17):5312-9
pubmed: 8071207
Molecules. 2020 Dec 12;25(24):
pubmed: 33322786
J Microbiol Biotechnol. 2020 Feb 28;30(2):237-243
pubmed: 31838800
World J Microbiol Biotechnol. 2020 Oct 12;36(11):170
pubmed: 33043393
Int J Mol Sci. 2019 Aug 13;20(16):
pubmed: 31412656
Acta Pharmacol Sin. 2020 Jan;41(1):138-144
pubmed: 31263275
Antioxidants (Basel). 2020 Nov 14;9(11):
pubmed: 33202630
Genomics Inform. 2013 Dec;11(4):272-6
pubmed: 24465240
FEMS Microbiol Lett. 2018 Oct 1;365(19):
pubmed: 29912354
J Photochem Photobiol B. 2021 Mar;216:112126
pubmed: 33516151
PLoS One. 2015 Apr 24;10(4):e0125428
pubmed: 25909751
Microorganisms. 2021 Jul 16;9(7):
pubmed: 34361955
FEMS Microbiol Ecol. 2005 Jan 1;51(2):231-6
pubmed: 16329871
Nucleic Acids Res. 2016 Aug 19;44(14):6614-24
pubmed: 27342282
Lett Appl Microbiol. 2013 Oct;57(4):295-302
pubmed: 23725061
J Microbiol Biotechnol. 2017 Sep 28;27(9):1692-1700
pubmed: 28746990
Appl Microbiol Biotechnol. 2020 Feb;104(4):1357-1370
pubmed: 31811318
Med Mycol. 2001 Aug;39(4):353-7
pubmed: 11556765
Biomacromolecules. 2015 May 11;16(5):1608-13
pubmed: 25826232
Nat Rev Microbiol. 2020 Apr;18(4):195-210
pubmed: 31992873
Arch Biochem Biophys. 2005 Jan 1;433(1):117-28
pubmed: 15581571
J Eur Acad Dermatol Venereol. 2008 Jul;22(7):852-8
pubmed: 18312329
Nucleic Acids Res. 2015 Jul 1;43(W1):W174-81
pubmed: 25883148
Biochim Biophys Acta. 1997 Oct 20;1336(3):539-48
pubmed: 9367182
Infect Immun. 1997 Dec;65(12):5110-7
pubmed: 9393803
Appl Microbiol Biotechnol. 2012 Feb;93(3):931-40
pubmed: 22173481
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Microbiology (Reading). 2009 Apr;155(Pt 4):1050-1057
pubmed: 19332807
Sci Rep. 2021 Aug 17;11(1):16649
pubmed: 34404820
Front Bioeng Biotechnol. 2021 Jun 09;9:662979
pubmed: 34178960
Evolution. 1985 Jul;39(4):783-791
pubmed: 28561359
Int J Biol Macromol. 2019 Jul 15;133:1072-1080
pubmed: 31029629
J Biotechnol. 2018 Jan 20;266:9-13
pubmed: 29199128
FEMS Microbiol Lett. 2014 Aug;357(1):85-91
pubmed: 24910146
Sci Rep. 2016 Apr 29;6:25191
pubmed: 27125900
Biotechnol Adv. 2021 Dec;53:107773
pubmed: 34022328