DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner.

Cas9 DNA methylation DNA repair chromatin microhomology-mediated next-generation sequencing nonhomologous end joining staggered end

Journal

The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884

Informations de publication

Date de publication:
09 2022
Historique:
received: 11 03 2022
accepted: 02 05 2022
pubmed: 8 5 2022
medline: 20 8 2022
entrez: 7 5 2022
Statut: ppublish

Résumé

The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.

Identifiants

pubmed: 35524464
doi: 10.1111/nph.18212
pmc: PMC9545110
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2285-2299

Subventions

Organisme : Wellcome Trust
ID : 206194
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Références

Plant J. 2020 Apr;102(1):99-115
pubmed: 31736216
PLoS Genet. 2012;8(10):e1002988
pubmed: 23071449
Nature. 2014 Nov 20;515(7527):436-9
pubmed: 25186730
Nucleic Acids Res. 2015 Oct 15;43(18):8924-41
pubmed: 26384421
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Nucleic Acids Res. 2015 Jan;43(Database issue):D1036-41
pubmed: 25428362
Nucleic Acids Res. 2021 Feb 26;49(4):1900-1913
pubmed: 33524108
Genome Res. 2012 Dec;22(12):2497-506
pubmed: 22960375
Nucleic Acids Res. 2014 Dec 16;42(22):e168
pubmed: 25300484
PLoS Biol. 2018 Dec 12;16(12):e2005595
pubmed: 30540740
Science. 2015 Nov 13;350(6262):823-6
pubmed: 26564855
Nat Biotechnol. 2018 Nov 27;:
pubmed: 30480667
Curr Biol. 2001 May 15;11(10):747-57
pubmed: 11378384
Epigenetics Chromatin. 2019 Sep 11;12(1):54
pubmed: 31511048
Plant Biotechnol J. 2021 Feb;19(2):230-239
pubmed: 33047464
Genome Biol. 2015 May 28;16:111
pubmed: 26018130
Curr Biol. 2007 Feb 20;17(4):379-84
pubmed: 17239600
Trends Biochem Sci. 2015 Nov;40(11):701-714
pubmed: 26439531
Bioinformatics. 2014 May 15;30(10):1473-5
pubmed: 24463181
Nat Biotechnol. 2013 Sep;31(9):827-32
pubmed: 23873081
Biochemistry. 2015 Dec 8;54(48):7063-6
pubmed: 26579937
Genetics. 2013 Sep;195(1):289-91
pubmed: 23833182
Plant J. 2018 Jan;93(2):377-386
pubmed: 29161464
Plant J. 2003 Jun;34(5):565-72
pubmed: 12787239
Nature. 2014 Mar 6;507(7490):62-7
pubmed: 24476820
Mol Cell. 2016 Aug 18;63(4):633-646
pubmed: 27499295
Nucleic Acids Res. 2016 Jul 27;44(13):6482-92
pubmed: 27280977
Mol Cell. 2021 May 20;81(10):2216-2230.e10
pubmed: 33848455
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Interdiscip Sci. 2018 Jun;10(2):455-465
pubmed: 29644494
Mol Plant Pathol. 2016 Oct;17(8):1276-88
pubmed: 27103354
Nat Commun. 2017 Jan 09;8:13905
pubmed: 28067217
Nat Biotechnol. 2013 Aug;31(8):691-3
pubmed: 23929340
Plant Biotechnol J. 2019 May;17(5):858-868
pubmed: 30291759
Nat Biotechnol. 2016 Mar;34(3):339-44
pubmed: 26789497
Cold Spring Harb Perspect Biol. 2013 May 01;5(5):a012757
pubmed: 23637284
Sci Rep. 2016 Nov 22;5:37584
pubmed: 27874072
J Genet Genomics. 2016 Jan 20;43(1):37-43
pubmed: 26842992
Nat Biotechnol. 2019 Mar;37(3):224-226
pubmed: 30809026
Plant Cell. 1998 Jun;10(6):937-46
pubmed: 9634582
Plant Biotechnol J. 2019 Feb;17(2):362-372
pubmed: 29972722
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5):
pubmed: 33495321
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2040-E2047
pubmed: 29440496
Plant Physiol. 2015 Aug;168(4):1219-25
pubmed: 26143255
ACS Synth Biol. 2017 Mar 17;6(3):428-438
pubmed: 27783893
Nat Biotechnol. 2013 Aug;31(8):688-91
pubmed: 23929339
Mol Plant. 2017 Mar 6;10(3):530-532
pubmed: 28089950
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9351-9358
pubmed: 30201707
Plant J. 2012 Dec;72(5):781-90
pubmed: 22860689
Elife. 2016 Mar 17;5:
pubmed: 26987018
Sci Rep. 2016 Jul 28;6:30485
pubmed: 27465215
Sci Rep. 2018 Jan 17;8(1):888
pubmed: 29343825
Brief Funct Genomics. 2020 Jan 22;19(1):26-39
pubmed: 31915817
Nat Struct Mol Biol. 2021 Apr;28(4):382-387
pubmed: 33846633
Plant J. 2014 Jul;79(2):348-59
pubmed: 24836556
Plant Biotechnol J. 2018 Nov;16(11):1892-1903
pubmed: 29577542
Neurosci Lett. 2003 Mar 13;339(1):62-6
pubmed: 12618301
PLoS One. 2020 Jan 24;15(1):e0227994
pubmed: 31978124

Auteurs

Adéla Přibylová (A)

Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
Faculty of Science, Charles University, Prague, 128 44, Czech Republic.

Lukáš Fischer (L)

Faculty of Science, Charles University, Prague, 128 44, Czech Republic.

Douglas E Pyott (DE)

The Wellcome Trust Center for Cell Biology, Institute of Cell Biology, The University of Edinburgh, Edinburgh, EH9 3BF, UK.

Andrew Bassett (A)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.

Attila Molnar (A)

Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH