Metabolic and transcriptome analysis of dark red taproot in radish (Raphanus sativus L.).


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2022
Historique:
received: 13 01 2022
accepted: 26 04 2022
entrez: 10 5 2022
pubmed: 11 5 2022
medline: 14 5 2022
Statut: epublish

Résumé

The red color in radish taproots is an important quality index and is mainly affected by anthocyanins. However, the metabolite components and gene expression underlying dark red taproot color formation in radish remain elusive. In this study, the metabolites and gene expression patterns affecting anthocyanin biosynthesis were monitored in the dark red taproots. Comparative analysis of anthocyanin metabolites between dark red taproots and white taproots indicated that pelargonin and pelargonidin 3-O-beta-D-glucoside were the most promising dark red pigments responsible for the coloration of the taproots. Transcriptomic analysis of gene expression between dark red taproots and white taproots revealed that most of genes involved in the anthocyanin biosynthesis pathway were up-regulated in dark red taproots. In particular, RsCHS and RsDFR were the two most up-regulated genes in the dark red taproots. Moreover, the higher coexpression of two R2R3-Myb transcription factors, RsMYB1 and RsMYB2, may contribute to dark red color formation. Our work documents metabolomic and transcriptomic changes related to the dark red color formation in taproots radish and provides valuable data for anthocyanin-rich radish breeding.

Identifiants

pubmed: 35536827
doi: 10.1371/journal.pone.0268295
pii: PONE-D-22-01246
pmc: PMC9089891
doi:

Substances chimiques

Anthocyanins 0
Plant Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0268295

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Plant Biotechnol J. 2020 Jan;18(1):274-286
pubmed: 31218798
J Agric Food Chem. 2011 Jun 8;59(11):6034-9
pubmed: 21548630
Genes Genomics. 2020 Apr;42(4):413-424
pubmed: 31997158
Mol Genet Genomics. 2016 Aug;291(4):1523-34
pubmed: 27003438
Hortic Res. 2019 Mar 1;6:40
pubmed: 30854214
Mol Plant. 2012 Mar;5(2):387-400
pubmed: 22201047
Front Plant Sci. 2016 Mar 18;7:311
pubmed: 27047501
Plant Physiol Biochem. 2019 Jun;139:528-539
pubmed: 31029026
Curr Opin Biotechnol. 2013 Apr;24(2):329-35
pubmed: 22901316
Plant Cell Rep. 2020 Feb;39(2):217-226
pubmed: 31728702
Food Chem. 2018 Feb 15;241:7-13
pubmed: 28958560
Mol Plant. 2017 Jul 5;10(7):918-929
pubmed: 28666688
PeerJ. 2021 Apr 7;9:e10978
pubmed: 33868802
J Agric Food Chem. 2020 Mar 11;68(10):3033-3049
pubmed: 32052629
Front Genet. 2020 Apr 24;11:322
pubmed: 32391051
Sci Rep. 2021 Jun 1;11(1):11434
pubmed: 34075070
Plant J. 2008 Mar;53(5):814-27
pubmed: 18036197
Plant J. 2005 Apr;42(2):218-35
pubmed: 15807784
Trends Plant Sci. 2013 Sep;18(9):477-83
pubmed: 23870661
Food Chem. 2020 Jun 15;315:126284
pubmed: 32007815
Hortic Res. 2022 Jan 19;:
pubmed: 35043168
PeerJ. 2019 Nov 7;7:e8041
pubmed: 31720127
Plant Cell Rep. 2016 Mar;35(3):641-53
pubmed: 26703384
J Exp Bot. 2018 Apr 27;69(10):2595-2608
pubmed: 29538703
Front Plant Sci. 2016 Aug 22;7:1210
pubmed: 27597853
Plant Cell Rep. 2021 Sep;40(9):1735-1749
pubmed: 34308490
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Sci Rep. 2015 Jun 09;5:10835
pubmed: 26056784
J Exp Bot. 2020 May 9;71(9):2537-2550
pubmed: 31961436
BMC Mol Cell Biol. 2019 Oct 23;20(1):45
pubmed: 31646986
J Agric Food Chem. 2011 Nov 23;59(22):12059-72
pubmed: 21970730
Plant J. 2019 Mar;97(5):825-840
pubmed: 30447121
Trends Plant Sci. 2005 May;10(5):236-42
pubmed: 15882656
PLoS One. 2018 Sep 21;13(9):e0204241
pubmed: 30240413

Auteurs

Shuangping Heng (S)

College of Life Science, Xinyang Normal University, Xinyang, P.R. China.

Changbin Gao (C)

Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, P.R. China.

Mengdi Cui (M)

College of Life Science, Xinyang Normal University, Xinyang, P.R. China.

Jing Fu (J)

College of Life Science, Xinyang Normal University, Xinyang, P.R. China.

Sujing Ren (S)

College of Life Science, Xinyang Normal University, Xinyang, P.R. China.

Kaiyun Xin (K)

College of Life Science, Xinyang Normal University, Xinyang, P.R. China.

Congan He (C)

Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, P.R. China.

Aihua Wang (A)

Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, P.R. China.

Liping Song (L)

Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, P.R. China.

Liguang Tang (L)

Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, P.R. China.

Bincai Wang (B)

Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, P.R. China.

Xueli Zhang (X)

Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, P.R. China.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH