Systematic and quantitative view of the antiviral arsenal of prokaryotes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
10 05 2022
Historique:
received: 18 02 2022
accepted: 22 04 2022
entrez: 10 5 2022
pubmed: 11 5 2022
medline: 14 5 2022
Statut: epublish

Résumé

Bacteria and archaea have developed multiple antiviral mechanisms, and genomic evidence indicates that several of these antiviral systems co-occur in the same strain. Here, we introduce DefenseFinder, a tool that automatically detects known antiviral systems in prokaryotic genomes. We use DefenseFinder to analyse 21000 fully sequenced prokaryotic genomes, and find that antiviral strategies vary drastically between phyla, species and strains. Variations in composition of antiviral systems correlate with genome size, viral threat, and lifestyle traits. DefenseFinder will facilitate large-scale genomic analysis of antiviral defense systems and the study of host-virus interactions in prokaryotes.

Identifiants

pubmed: 35538097
doi: 10.1038/s41467-022-30269-9
pii: 10.1038/s41467-022-30269-9
pmc: PMC9090908
doi:

Substances chimiques

Antiviral Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2561

Informations de copyright

© 2022. The Author(s).

Références

Nat Commun. 2022 Jan 18;13(1):372
pubmed: 35042853
PLoS One. 2014 Oct 17;9(10):e110726
pubmed: 25330359
Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5
pubmed: 27095192
Nucleic Acids Res. 2014;42(16):10618-31
pubmed: 25120263
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
Cell Host Microbe. 2021 Nov 10;29(11):1620-1633.e8
pubmed: 34597593
CRISPR J. 2020 Dec;3(6):462-469
pubmed: 33275853
Nucleic Acids Res. 2021 Feb 26;49(4):e20
pubmed: 33290505
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30
pubmed: 24288371
Science. 2021 Jul 30;373(6554):
pubmed: 34326207
Cell Host Microbe. 2022 Apr 13;30(4):570-582.e7
pubmed: 35421352
Science. 2021 Oct 22;374(6566):488-492
pubmed: 34672730
Nucleic Acids Res. 2015 Jan;43(Database issue):D298-9
pubmed: 25378308
Nat Biotechnol. 2017 Nov;35(11):1026-1028
pubmed: 29035372
Cell Host Microbe. 2022 May 11;30(5):740-753.e5
pubmed: 35316646
Science. 2020 Aug 28;369(6507):1077-1084
pubmed: 32855333
Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9
pubmed: 25428365
Nat Microbiol. 2020 Dec;5(12):1608-1615
pubmed: 32839535
Virol J. 2010 Dec 03;7:360
pubmed: 21129205
Nucleic Acids Res. 2021 Nov 8;49(19):10868-10878
pubmed: 34606606
Nature. 2021 Dec;600(7887):116-120
pubmed: 34853457
Nature. 2018 Dec;564(7735):283-286
pubmed: 30518855
ISME J. 2016 Nov;10(11):2744-2754
pubmed: 27015004
Science. 2018 Mar 2;359(6379):
pubmed: 29371424
Nat Rev Microbiol. 2020 Feb;18(2):113-119
pubmed: 31695182
NAR Genom Bioinform. 2021 Jan 12;3(1):lqaa106
pubmed: 33575648
Nucleic Acids Res. 2018 Jul 2;46(W1):W246-W251
pubmed: 29790974
Nat Methods. 2020 Mar;17(3):261-272
pubmed: 32015543
Cell. 2020 Dec 10;183(6):1551-1561.e12
pubmed: 33157039
Mol Gen Genet. 1992 Feb;231(3):480-4
pubmed: 1531692
Nat Microbiol. 2018 Jan;3(1):90-98
pubmed: 29085076
Nucleic Acids Res. 2022 Aug 26;50(15):8401-8417
pubmed: 35066583
Gigascience. 2020 Jun 1;9(6):
pubmed: 32556168
Nat Rev Microbiol. 2020 Feb;18(2):67-83
pubmed: 31857715
EMBO J. 2015 Jan 13;34(2):169-83
pubmed: 25452498
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Nat Microbiol. 2020 Jul;5(7):917-928
pubmed: 32251370
Nucleic Acids Res. 2020 Jan 8;48(D1):D590-D598
pubmed: 31620779
Mol Biol Evol. 2020 May 1;37(5):1530-1534
pubmed: 32011700
Microbiome. 2021 Feb 1;9(1):37
pubmed: 33522966
Nature. 2021 Jan;589(7840):120-124
pubmed: 32937646
Nucleic Acids Res. 2020 Jan 24;48(2):748-760
pubmed: 31745554
Nature. 2019 Oct;574(7780):691-695
pubmed: 31533127
Genes Dev. 1992 Mar;6(3):497-510
pubmed: 1372278
Mol Biol Evol. 2021 May 19;38(6):2497-2512
pubmed: 33570565
Cell. 2021 Nov 11;184(23):5728-5739.e16
pubmed: 34644530
Nucleic Acids Res. 2020 Dec 16;48(22):12632-12647
pubmed: 33275130
Mol Cell. 2021 Jun 3;81(11):2361-2373.e9
pubmed: 33838104

Auteurs

Florian Tesson (F)

Université de Paris, IAME, UMR 1137, INSERM, Paris, France.
SEED, U1284, INSERM, Université de Paris, Paris, France.

Alexandre Hervé (A)

Independent Researcher, Paris, France.

Ernest Mordret (E)

SEED, U1284, INSERM, Université de Paris, Paris, France.

Marie Touchon (M)

Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France.

Camille d'Humières (C)

Université de Paris, IAME, UMR 1137, INSERM, Paris, France.

Jean Cury (J)

SEED, U1284, INSERM, Université de Paris, Paris, France. jean.cury@normalesup.org.
Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, UMR, 9015, Orsay, France. jean.cury@normalesup.org.

Aude Bernheim (A)

Université de Paris, IAME, UMR 1137, INSERM, Paris, France. aude.bernheim@inserm.fr.
SEED, U1284, INSERM, Université de Paris, Paris, France. aude.bernheim@inserm.fr.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Animals Swine Antiviral Agents Swine Diseases Coronavirus Infections
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH