Synthetic Analogs of 6-Bromohypaphorine, a Natural Agonist of Nicotinic Acetylcholine Receptors, Reduce Cardiac Reperfusion Injury in a Rat Model of Myocardial Ischemia.
6-bromohypaphorine
myocardial infarction
nicotinic acetylcholine receptor
reperfusion injury
synthetic analogs
Journal
Doklady. Biochemistry and biophysics
ISSN: 1608-3091
Titre abrégé: Dokl Biochem Biophys
Pays: United States
ID NLM: 101126895
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
10
11
2021
accepted:
25
11
2021
revised:
25
11
2021
entrez:
10
5
2022
pubmed:
11
5
2022
medline:
14
5
2022
Statut:
ppublish
Résumé
The data available to date indicate that the activation of nicotinic acetylcholine receptors (nAChR) of α7 type can reduce heart damage resulting from ischemia and subsequent reperfusion. We have studied two new synthetic D-analogs of 6-bromohypaphorine, which are selective agonists of α7 nAChR, in a rat model of myocardial ischemia. Acute myocardial infarction in animals was induced by occlusion of the left coronary artery with its subsequent reperfusion under mechanical lung ventilation. It was found that one of the analogs was more active, and treatment with it at the onset of reperfusion statistically reduced infarct size. This analog also prevented changes in the concentration of potassium and sodium ions in the blood, occurring during occlusion/reperfusion injury. The data obtained indicate that hypaphorine analogs are promising for the development of drugs that reduce the adverse effects of myocardial infarction.
Identifiants
pubmed: 35538277
doi: 10.1134/S1607672922020132
pii: 10.1134/S1607672922020132
doi:
Substances chimiques
Receptors, Nicotinic
0
L-6-bromohypaporphine
64364-14-3
Tryptophan
8DUH1N11BX
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
47-51Informations de copyright
© 2022. Pleiades Publishing, Ltd.
Références
Yellon, D.M. and Hausenloy, D.J., Myocardial reperfusion injury, N. Engl. J. Med., 2007, vol. 357, pp. 1121–1135.
doi: 10.1056/NEJMra071667
Gunata, M. and Parlakpinar, H., A review of myocardial ischaemia/reperfusion injury: pathophysiology, experimental models, biomarkers, genetics, and pharmacological treatment, Cell Biochem. Funct., 2021, vol. 39, no. 2, pp. 190–217.
doi: 10.1002/cbf.3587
La Croix, C., Freeling, J., Giles, A., et al., Deficiency of m-2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress, Am. J. Physiol.: Heart Circ. Physiol., 2008, vol. 294, pp. 810–820.
Lara, A., Damasceno, D.D., Pireset, R., et al., Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure, Mol. Cell. Biol., 2010, vol. 30, pp. 1746–1756.
doi: 10.1128/MCB.00996-09
Intachai, K.C., Chattipakorn, S., Chattipakorn, N., et al., Revisiting the cardioprotective effects of acetylcholine receptor activation against myocardial ischemia/reperfusion injury, Int. J. Mol. Sci., 2018, vol. 19, no. 9, p. 2466.
doi: 10.3390/ijms19092466
Li, D.L., Liu, B.H., Sun, L., et al., Alterations of muscarinic acetylcholine receptors-2, 4 and α7-nicotinic acetylcholine receptor expression after ischaemia/reperfusion in the rat isolated heart, Clin. Exp. Pharmacol. Physiol., 2010, vol. 37, no. 12, pp. 1114–1119.
doi: 10.1111/j.1440-1681.2010.05448.x
Mavropoulos, S.A., Khan, S.N., Levy, A.C.J., et al., Nicotinic acetylcholine receptor-mediated protection of the rat heart exposed to ischemia reperfusion, Mol. Med., 2017, vol. 23, pp. 120–133.
doi: 10.2119/molmed.2017.00091
Kasheverov, I.E., Shelukhina, I.V., Kudryavtsev, D.S., et al., 6-Bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor, Mar. Drugs, 2015, vol. 13, pp. 1255–1266.
doi: 10.3390/md13031255
Zhang, Y., Gu, E., Zhang, J., et al., Role of p38 mitogen activated protein kinases in cardioprotection of morphine preconditioning, Chin. Med. J., 2007, vol. 120, pp. 777–781.
doi: 10.1097/00029330-200705010-00008
Schwarz, E.R., Somoano, Y., Hale, S.L., et al., What is the required reperfusion period for assessment of myocardial infarction size using triphenyltetrazolium chloride staining in the rat, J. Thromb. Thrombolysis, 2000, vol. 10, pp. 181–187.
doi: 10.1023/A:1018770711705
Kaneko, N., Okano, H., and Sawamoto, K., Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb, Genes Cells, 2006, vol. 11, no. 10, pp. 1145–1159.
doi: 10.1111/j.1365-2443.2006.01010.x
Mashimo, M., Iwasaki, Y., Inoue, S., et al., Acetylcholine released from T cells regulates intracellular Ca
doi: 10.1016/j.lfs.2016.12.015
Picciotto, M.R. and Zoli, M., Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, Front. Biosci., 2008, vol. 13, pp. 492–504.
doi: 10.2741/2695
Echeverria, V., Yarkov, A., and Aliev, G., Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease, Prog. Neurobiol., 2016, vol. 144, pp. 142–157.
doi: 10.1016/j.pneurobio.2016.01.002
Shen, J.X. and Yakel, J.L., Functional alpha7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices, J. Mol. Neurosci., 2012, vol. 48, pp. 14–21.
doi: 10.1007/s12031-012-9719-3
Corradi, J. and Bouzat, C., Understanding the bases of function and modulation of α7 nicotinic receptors: implications for drug discovery, Mol. Pharmacol., 2016, vol. 90, pp. 288–299.
doi: 10.1124/mol.116.104240
Levin, E.D., α7-Nicotinic receptors and cognition, Curr. Drug Targets, 2012, vol. 13, pp. 602–606.
doi: 10.2174/138945012800398937
Yue, Y., Liu, R., Cheng, W., et al., GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-κB signaling pathway through the α7 nicotinic acetylcholine receptor, Int. Immunopharmacol., 2015, vol. 29, no. 2, pp. 504–512.
doi: 10.1016/j.intimp.2015.10.005
Egea, J., Buendia, I., Parada, E., et al., Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection, Biochem. Pharmacol., 2015, vol. 97, pp. 463–472.
doi: 10.1016/j.bcp.2015.07.032
Moens, A.L., Clayes, M.J., and Timmermans, J.P., Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process, J. Cardiol., 2005, vol. 100, pp. 179–190.