Evolution of the Dearomative Functionalization of Activated Quinolines and Isoquinolines: Expansion of the Electrophile Scope.

Catalysis Dearomatisation Isoquinolines Quinolines Reduction

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
04 07 2022
Historique:
received: 30 03 2022
pubmed: 14 5 2022
medline: 30 6 2022
entrez: 13 5 2022
Statut: ppublish

Résumé

Herein we disclose a mild protocol for the reductive functionalisation of quinolinium and isoquinolinium salts. The reaction proceeds under transition-metal-free conditions as well as under rhodium catalysis with very low catalyst loadings (0.01 mol %) and uses inexpensive formic acid as the terminal reductant. A wide range of electrophiles, including enones, imides, unsaturated esters and sulfones, β-nitro styrenes and aldehydes are intercepted by the in situ formed enamine species forming a large variety of substituted tetrahydro(iso)quinolines. Electrophiles are incorporated at the C-3 and C-4 position for quinolines and isoquinolines respectively, providing access to substitution patterns which are not favoured in electrophilic or nucleophilic aromatic substitution. Finally, this reactivity was exploited to facilitate three types of annulation reactions, giving rise to complex polycyclic products of a formal [3+3] or [4+2] cycloaddition.

Identifiants

pubmed: 35560761
doi: 10.1002/anie.202204682
pmc: PMC9321684
doi:

Substances chimiques

Isoquinolines 0
Quinolines 0
Rhodium DMK383DSAC

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202204682

Subventions

Organisme : Austrian Science Fund FWF
ID : J 4483
Pays : Austria

Informations de copyright

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Références

J Am Chem Soc. 2022 Mar 23;144(11):4810-4818
pubmed: 35258282
J Am Chem Soc. 2016 Nov 2;138(43):14210-14213
pubmed: 27762549
Org Biomol Chem. 2021 May 12;19(18):3960-3982
pubmed: 33978039
Angew Chem Int Ed Engl. 2019 May 13;58(20):6722-6726
pubmed: 30888731
Nat Chem. 2019 Mar;11(3):242-247
pubmed: 30559370
Org Lett. 2012 May 18;14(10):2548-51
pubmed: 22540631
Angew Chem Int Ed Engl. 2020 Mar 2;59(10):4121-4130
pubmed: 31914213
Angew Chem Int Ed Engl. 2004 Apr 19;43(17):2293-6
pubmed: 15108149
Chemistry. 2021 Jan 4;27(1):39-53
pubmed: 32691439
Angew Chem Int Ed Engl. 2021 Jun 14;60(25):13793-13797
pubmed: 33830616
Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6425-6429
pubmed: 33460521
J Am Chem Soc. 2013 Nov 13;135(45):17230-5
pubmed: 24187991
Chem Sci. 2020 Jan 10;11(6):1672-1676
pubmed: 32206287
Chem Sci. 2019 Dec 17;11(5):1418-1424
pubmed: 34123266
Angew Chem Int Ed Engl. 2022 Jul 4;61(27):e202204682
pubmed: 35560761
Chem Soc Rev. 2020 Dec 7;49(23):8721-8748
pubmed: 33079105
Org Lett. 2017 Feb 17;19(4):966-968
pubmed: 28164712
Chem Sci. 2017 Oct 1;8(10):7112-7118
pubmed: 29147541
Chem Soc Rev. 2018 Oct 29;47(21):7996-8017
pubmed: 30073226
Chem Sci. 2020 Aug 10;11(32):8595-8599
pubmed: 34123119
Angew Chem Int Ed Engl. 2018 Oct 15;57(42):13912-13916
pubmed: 30152922
Org Lett. 2019 May 3;21(9):3314-3318
pubmed: 31001983
Chem. 2020 Jul 9;6(7):1589-1603
pubmed: 32715154
RSC Adv. 2020 Dec 23;11(1):349-353
pubmed: 35423044
Bioorg Med Chem Lett. 2008 Jul 15;18(14):4204-9
pubmed: 18558486
Chem Rec. 2015 Oct;15(5):907-24
pubmed: 26302711
Org Lett. 2019 Jun 21;21(12):4459-4463
pubmed: 31144820
Chemistry. 2013 Jun 24;19(26):8426-30
pubmed: 23677731
Org Lett. 2020 Jan 17;22(2):515-519
pubmed: 31913051
Chemistry. 2012 Jul 27;18(31):9525-9
pubmed: 22736573
J Am Chem Soc. 2018 Apr 18;140(15):5057-5060
pubmed: 29609461
Angew Chem Int Ed Engl. 2019 Oct 28;58(44):15697-15701
pubmed: 31486205
Science. 2021 Mar 26;371(6536):1338-1345
pubmed: 33766881
Chem Cent J. 2015 May 24;9:30
pubmed: 26029252
J Am Chem Soc. 2019 Feb 6;141(5):2087-2096
pubmed: 30681850
Angew Chem Int Ed Engl. 2017 Jun 26;56(27):7720-7738
pubmed: 28164423
Chemistry. 2020 Feb 11;26(9):1963-1967
pubmed: 31917881
Org Lett. 2020 Oct 2;22(19):7617-7621
pubmed: 32940478
Chem Sci. 2020 Nov 16;12(2):742-746
pubmed: 34163807
J Am Chem Soc. 1975 Jan 22;97(2):380-8
pubmed: 1133355
Neurol Med Chir (Tokyo). 2006 Sep;46(9):421-8
pubmed: 16998274
Am J Physiol Cell Physiol. 2000 Jan;278(1):C57-65
pubmed: 10644512
Org Biomol Chem. 2006 Mar 21;4(6):1071-84
pubmed: 16525551
J Am Chem Soc. 2020 Feb 5;142(5):2514-2523
pubmed: 31967814
J Org Chem. 2020 Apr 3;85(7):5027-5037
pubmed: 32154711

Auteurs

Marvin Kischkewitz (M)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Bruno Marinic (B)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Nicolas Kratena (N)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Yonglin Lai (Y)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Hamish B Hepburn (HB)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Mark Dow (M)

Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK.

Kirsten E Christensen (KE)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Timothy J Donohoe (TJ)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Articles similaires

Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Peroxynitrous Acid Animals Escherichia coli Immunotherapy Mice
Colorimetry Captopril Humans Alloys Limit of Detection
Substrate Specificity Peptides Catalysis Hydrolysis Protein Conformation

Classifications MeSH