Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
07 2022
Historique:
received: 19 02 2022
accepted: 11 05 2022
pubmed: 17 5 2022
medline: 9 7 2022
entrez: 16 5 2022
Statut: ppublish

Résumé

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants

Identifiants

pubmed: 35576972
doi: 10.1038/s41586-022-04856-1
pii: 10.1038/s41586-022-04856-1
pmc: PMC10579982
mid: NIHMS1930195
doi:

Substances chimiques

Antibodies, Monoclonal 0
Antibodies, Monoclonal, Humanized 0
Antibodies, Neutralizing 0
Antibodies, Viral 0
Antiviral Agents 0
COV2-2130 0
COV2-2196 0
Drug Combinations 0
Hydroxylamines 0
Indazoles 0
Lactams 0
Nitriles 0
Spike Glycoprotein, Coronavirus 0
Triazines 0
Triazoles 0
casirivimab and imdevimab drug combination 0
spike protein, SARS-CoV-2 0
Cytidine 5CSZ8459RP
nirmatrelvir 7R9A5P7H32
Proline 9DLQ4CIU6V
Leucine GMW67QNF9C
ensitrelvir PX665RAA3H
molnupiravir YA84KI1VEW

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

119-127

Subventions

Organisme : NIAID NIH HHS
ID : HHSN272201400008C
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI157155
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00014
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA BC012018
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI069274
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93019C00051
Pays : United States

Investigateurs

Pamela Bennett-Baker (P)
Zijin Chu (Z)
Dawson Davis (D)
Theresa Kowalski-Dobson (T)
Ashley Eckard (A)
Carmen Gherasim (C)
Wolf Gremel (W)
Kathleen Lindsey (K)
David Manthei (D)
Alyssa Meyers (A)
Julio Zuniga Moya (JZ)
Aaron Rico (A)
Emily Stoneman (E)
Victoria Blanc (V)
Savanna Sneeringer (S)
Lauren Warsinske (L)

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Callaway, E. & Ledford, H. How bad is Omicron? What scientists know so far. Nature 600, 197–199 (2021).
pubmed: 34857948 doi: 10.1038/d41586-021-03614-z
Flemming, A. Omicron, the great escape artist. Nat. Rev. Immunol. 22, 75 (2022).
pubmed: 35017722 doi: 10.1038/s41577-022-00676-6
World Health Organization. Weekly epidemiological update on COVID-19, 5 April 2022, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-5-april-2022 (2022).
Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 185,2103-2115.e19 (2022).
Lyngse, F. et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: evidence from Danish households. Preprint at medRxiv https://doi.org/10.1101/2022.01.28.22270044 (2022).
Elliott, P. et al. Post-peak dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022. Preprint at medRxiv https://doi.org/10.1101/2022.02.03.22270365 (2022).
Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603, 687–692 (2022).
pubmed: 35062015 pmcid: 8942849 doi: 10.1038/s41586-022-04441-6
Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).
pubmed: 35062016 doi: 10.1038/s41586-022-04442-5
Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700–705 (2022).
pubmed: 35104835 pmcid: 8942852 doi: 10.1038/s41586-022-04462-1
SARS-CoV-2 Variants of Concern and Variants Under Investigation in England, Technical Briefing 36 (UK Health Security Agency, 2022).
Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).
pubmed: 35016199 doi: 10.1038/s41586-021-04389-z
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).
pubmed: 35016195 doi: 10.1038/s41586-021-04386-2
Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).
pubmed: 35016194 doi: 10.1038/s41586-021-04385-3
Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).
pubmed: 35016198 doi: 10.1038/s41586-021-04388-0
Takashita, E. et al. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant. N. Engl. J. Med. 386, 995–998 (2022).
pubmed: 35081300 doi: 10.1056/NEJMc2119407
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020).
pubmed: 32155444 pmcid: 7102599 doi: 10.1016/j.cell.2020.02.058
Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).
pubmed: 33184236 pmcid: 7775736 doi: 10.1126/science.abe8499
Xie, X. et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat. Med. 27, 620–621 (2021).
pubmed: 33558724 doi: 10.1038/s41591-021-01270-4
Lubinski, B. et al. Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience 25, 103589 (2022).
pubmed: 34909610 doi: 10.1016/j.isci.2021.103589
Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).
pubmed: 34823256 doi: 10.1038/s41586-021-04266-9
Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294–299 (2022).
pubmed: 34818667 doi: 10.1038/s41586-021-04245-0
Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085.e1012 (2020).
pubmed: 33031744 pmcid: 7510428 doi: 10.1016/j.cell.2020.09.050
Dinnon, K. H. 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108 pmcid: 8034761 doi: 10.1038/s41586-020-2708-8
Muruato, A. et al. Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biol. 19, e3001284 (2021).
pubmed: 34735434 pmcid: 8594810 doi: 10.1371/journal.pbio.3001284
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).
pubmed: 32839612 pmcid: 7578095 doi: 10.1038/s41590-020-0778-2
McCray, P. B. Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
pubmed: 17079315 doi: 10.1128/JVI.02012-06
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
pubmed: 32571934 pmcid: 7368255 doi: 10.1073/pnas.2009799117
Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).
pubmed: 32408338 pmcid: 7394720 doi: 10.1038/s41586-020-2342-5
Chan, J. F. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71, 2428–2446 (2020).
pubmed: 32215622 doi: 10.1093/cid/ciaa644
Simpson, S. et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA—Secondary Publication. J. Thorac. Imaging 35, 219–227 (2020).
pubmed: 32324653 doi: 10.1097/RTI.0000000000000524
Imai, M. et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc. Natl Acad. Sci. USA 118, e2106535118 (2021).
pubmed: 34140350 pmcid: 8271735 doi: 10.1073/pnas.2106535118
Gilliland, T. et al. Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines. Preprint at bioRxiv, https://doi.org/10.1101/2021.07.26.453840 (2021).
Gruell, H. et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat. Med. 28, 477–480 (2022).
pubmed: 35046572 pmcid: 8767537 doi: 10.1038/s41591-021-01676-0
Cheng, S. M. S. et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 28, 486–489 (2022).
pubmed: 35051989 doi: 10.1038/s41591-022-01704-7
Zou, J. et al. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. Nat. Commun. 13, 852 (2022).
pubmed: 35140233 pmcid: 8828871 doi: 10.1038/s41467-022-28544-w
Rossler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent persons. N. Engl. J. Med. 386, 698–700 (2022).
pubmed: 35021005 doi: 10.1056/NEJMc2119236
Carreno, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602, 682–688 (2022).
pubmed: 35016197 doi: 10.1038/s41586-022-04399-5
Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).
pubmed: 35240676 pmcid: 9021018 doi: 10.1038/s41586-022-04594-4
Uraki, R. et al. Therapeutic efficacy of antibodies and antivirals against a SARS-CoV-2 Omicron variant. Research Square https://doi.org/10.21203/rs.3.rs-1240227/v1 (2022).
Hammond, J. et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N. Engl. J. Med. 386, 1397–1408 (2022).
pubmed: 35172054 doi: 10.1056/NEJMoa2118542
Unoh, Y. et al. Discovery of S-217622, a non-covalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512 (2022).
pubmed: 35352927 pmcid: 8982737 doi: 10.1021/acs.jmedchem.2c00117
Wahl, A. et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 591, 451–457 (2021).
pubmed: 33561864 pmcid: 7979515 doi: 10.1038/s41586-021-03312-w
Owen, D. R. et al. An oral SARS-CoV-2 M
pubmed: 34726479 doi: 10.1126/science.abl4784
Majumdar, S. & Sarkar, R. Mutational and phylogenetic analyses of the two lineages of the Omicron variant. J. Med. Virol. https://doi.org/10.1002/jmv.27558 (2021).
Vieillard-Baron, A. et al. Epidemiological characteristics and severity of Omicron variant cases in the APHP critical care units. Preprint at medRxiv https://doi.org/10.1101/2022.01.25.22269839 (2022).
Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).
pubmed: 35104837 pmcid: 8942856 doi: 10.1038/s41586-022-04474-x
Ferren, M. et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat. Commun. 12, 5809 (2021).
pubmed: 34608167 pmcid: 8490365 doi: 10.1038/s41467-021-26096-z
Tomris, I. et al. Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathog. 18, e1010340 (2022).
pubmed: 35255100 pmcid: 8930000 doi: 10.1371/journal.ppat.1010340
Case, J. et al. Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Preprint at bioRxiv https://doi.org/10.1101/2022.03.17.484787 (2022).
Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).
pubmed: 32165541 pmcid: 7132130 doi: 10.1073/pnas.2002589117
Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021).
pubmed: 33664494 pmcid: 8058618 doi: 10.1038/s41591-021-01294-w
Corbett, K. S. et al. mRNA-1273 protects against SARS-CoV-2 Beta infection in nonhuman primates. Nat. Immunol. 22, 1306–1315 (2021).
pubmed: 34417590 pmcid: 8488000 doi: 10.1038/s41590-021-01021-0
Yasuhara, A. et al. Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nat. Microbiol. 4, 1024–1034 (2019).
pubmed: 30886361 doi: 10.1038/s41564-019-0401-1
Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).
pubmed: 32838945 doi: 10.1016/j.virol.2020.05.015
Chung, M. et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295, 202–207 (2020).
pubmed: 32017661 doi: 10.1148/radiol.2020200230
Itokawa, K., Sekizuka, T., Hashino, M., Tanaka, R. & Kuroda, M. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS ONE 15, e0239403 (2020).
pubmed: 32946527 pmcid: 7500614 doi: 10.1371/journal.pone.0239403
Quick, J. nCoV-2019 sequencing protocol. protocols.io https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye (2020).
Itokawa, K. et al. nCoV-2019 sequencing protocol for Illumina V.5. protocols.io https://www.protocols.io/view/ncov-2019-sequencing-protocol-for-illumina-b2msqc6e?version_warning=no (2021).
Yamayoshi, S. et al. Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. eClinicalMedicine 32, 100734 (2021).
pubmed: 33589882 pmcid: 7877219 doi: 10.1016/j.eclinm.2021.100734

Auteurs

Ryuta Uraki (R)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Maki Kiso (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Shun Iida (S)

Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.

Masaki Imai (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Emi Takashita (E)

Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan.

Makoto Kuroda (M)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Peter J Halfmann (PJ)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Samantha Loeber (S)

Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Tadashi Maemura (T)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Seiya Yamayoshi (S)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Seiichiro Fujisaki (S)

Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan.

Zhongde Wang (Z)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Mutsumi Ito (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Michiko Ujie (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Kiyoko Iwatsuki-Horimoto (K)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Yuri Furusawa (Y)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.

Ryan Wright (R)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Zhenlu Chong (Z)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Seiya Ozono (S)

Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.

Atsuhiro Yasuhara (A)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Hiroshi Ueki (H)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Yuko Sakai-Tagawa (Y)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Rong Li (R)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Yanan Liu (Y)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Deanna Larson (D)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Michiko Koga (M)

Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Takeya Tsutsumi (T)

Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Eisuke Adachi (E)

Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Makoto Saito (M)

Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Shinya Yamamoto (S)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Masao Hagihara (M)

Department of Hematology, Eiju General Hospital, Tokyo, Japan.

Keiko Mitamura (K)

Division of Infection Control, Eiju General Hospital, Tokyo, Japan.

Tetsuro Sato (T)

Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan.

Masayuki Hojo (M)

Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, Tokyo, Japan.

Shin-Ichiro Hattori (SI)

Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Kenji Maeda (K)

Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Riccardo Valdez (R)

Department of Pathology, University of Michigan, Ann Arbor, MI, USA.

Moe Okuda (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Jurika Murakami (J)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Calvin Duong (C)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Sucheta Godbole (S)

Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Daniel C Douek (DC)

Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Ken Maeda (K)

Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan.

Shinji Watanabe (S)

Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan.

Aubree Gordon (A)

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Norio Ohmagari (N)

Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan.

Hiroshi Yotsuyanagi (H)

Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Michael S Diamond (MS)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.

Hideki Hasegawa (H)

Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan.

Hiroaki Mitsuya (H)

Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA.

Tadaki Suzuki (T)

Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.

Yoshihiro Kawaoka (Y)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan. yoshihiro.kawaoka@wisc.edu.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan. yoshihiro.kawaoka@wisc.edu.
Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA. yoshihiro.kawaoka@wisc.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH