Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2.
Animals
Antibodies, Monoclonal
/ pharmacology
Antibodies, Monoclonal, Humanized
Antibodies, Neutralizing
/ pharmacology
Antibodies, Viral
/ pharmacology
Antiviral Agents
/ pharmacology
COVID-19
/ genetics
Cricetinae
Cytidine
/ analogs & derivatives
Drug Combinations
Hydroxylamines
Indazoles
Lactams
Leucine
Mice
Nitriles
Proline
SARS-CoV-2
/ drug effects
Spike Glycoprotein, Coronavirus
/ genetics
Triazines
Triazoles
COVID-19 Drug Treatment
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
19
02
2022
accepted:
11
05
2022
pubmed:
17
5
2022
medline:
9
7
2022
entrez:
16
5
2022
Statut:
ppublish
Résumé
The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants
Identifiants
pubmed: 35576972
doi: 10.1038/s41586-022-04856-1
pii: 10.1038/s41586-022-04856-1
pmc: PMC10579982
mid: NIHMS1930195
doi:
Substances chimiques
Antibodies, Monoclonal
0
Antibodies, Monoclonal, Humanized
0
Antibodies, Neutralizing
0
Antibodies, Viral
0
Antiviral Agents
0
COV2-2130
0
COV2-2196
0
Drug Combinations
0
Hydroxylamines
0
Indazoles
0
Lactams
0
Nitriles
0
Spike Glycoprotein, Coronavirus
0
Triazines
0
Triazoles
0
casirivimab and imdevimab drug combination
0
spike protein, SARS-CoV-2
0
Cytidine
5CSZ8459RP
nirmatrelvir
7R9A5P7H32
Proline
9DLQ4CIU6V
Leucine
GMW67QNF9C
ensitrelvir
PX665RAA3H
molnupiravir
YA84KI1VEW
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
119-127Subventions
Organisme : NIAID NIH HHS
ID : HHSN272201400008C
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI157155
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00014
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA BC012018
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI069274
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93019C00051
Pays : United States
Investigateurs
Pamela Bennett-Baker
(P)
Zijin Chu
(Z)
Dawson Davis
(D)
Theresa Kowalski-Dobson
(T)
Ashley Eckard
(A)
Carmen Gherasim
(C)
Wolf Gremel
(W)
Kathleen Lindsey
(K)
David Manthei
(D)
Alyssa Meyers
(A)
Julio Zuniga Moya
(JZ)
Aaron Rico
(A)
Emily Stoneman
(E)
Victoria Blanc
(V)
Savanna Sneeringer
(S)
Lauren Warsinske
(L)
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Callaway, E. & Ledford, H. How bad is Omicron? What scientists know so far. Nature 600, 197–199 (2021).
pubmed: 34857948
doi: 10.1038/d41586-021-03614-z
Flemming, A. Omicron, the great escape artist. Nat. Rev. Immunol. 22, 75 (2022).
pubmed: 35017722
doi: 10.1038/s41577-022-00676-6
World Health Organization. Weekly epidemiological update on COVID-19, 5 April 2022, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-5-april-2022 (2022).
Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 185,2103-2115.e19 (2022).
Lyngse, F. et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: evidence from Danish households. Preprint at medRxiv https://doi.org/10.1101/2022.01.28.22270044 (2022).
Elliott, P. et al. Post-peak dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022. Preprint at medRxiv https://doi.org/10.1101/2022.02.03.22270365 (2022).
Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603, 687–692 (2022).
pubmed: 35062015
pmcid: 8942849
doi: 10.1038/s41586-022-04441-6
Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).
pubmed: 35062016
doi: 10.1038/s41586-022-04442-5
Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700–705 (2022).
pubmed: 35104835
pmcid: 8942852
doi: 10.1038/s41586-022-04462-1
SARS-CoV-2 Variants of Concern and Variants Under Investigation in England, Technical Briefing 36 (UK Health Security Agency, 2022).
Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).
pubmed: 35016199
doi: 10.1038/s41586-021-04389-z
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).
pubmed: 35016195
doi: 10.1038/s41586-021-04386-2
Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).
pubmed: 35016194
doi: 10.1038/s41586-021-04385-3
Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).
pubmed: 35016198
doi: 10.1038/s41586-021-04388-0
Takashita, E. et al. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant. N. Engl. J. Med. 386, 995–998 (2022).
pubmed: 35081300
doi: 10.1056/NEJMc2119407
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020).
pubmed: 32155444
pmcid: 7102599
doi: 10.1016/j.cell.2020.02.058
Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).
pubmed: 33184236
pmcid: 7775736
doi: 10.1126/science.abe8499
Xie, X. et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat. Med. 27, 620–621 (2021).
pubmed: 33558724
doi: 10.1038/s41591-021-01270-4
Lubinski, B. et al. Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience 25, 103589 (2022).
pubmed: 34909610
doi: 10.1016/j.isci.2021.103589
Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).
pubmed: 34823256
doi: 10.1038/s41586-021-04266-9
Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294–299 (2022).
pubmed: 34818667
doi: 10.1038/s41586-021-04245-0
Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085.e1012 (2020).
pubmed: 33031744
pmcid: 7510428
doi: 10.1016/j.cell.2020.09.050
Dinnon, K. H. 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108
pmcid: 8034761
doi: 10.1038/s41586-020-2708-8
Muruato, A. et al. Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biol. 19, e3001284 (2021).
pubmed: 34735434
pmcid: 8594810
doi: 10.1371/journal.pbio.3001284
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).
pubmed: 32839612
pmcid: 7578095
doi: 10.1038/s41590-020-0778-2
McCray, P. B. Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
pubmed: 17079315
doi: 10.1128/JVI.02012-06
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
pubmed: 32571934
pmcid: 7368255
doi: 10.1073/pnas.2009799117
Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).
pubmed: 32408338
pmcid: 7394720
doi: 10.1038/s41586-020-2342-5
Chan, J. F. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71, 2428–2446 (2020).
pubmed: 32215622
doi: 10.1093/cid/ciaa644
Simpson, S. et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA—Secondary Publication. J. Thorac. Imaging 35, 219–227 (2020).
pubmed: 32324653
doi: 10.1097/RTI.0000000000000524
Imai, M. et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc. Natl Acad. Sci. USA 118, e2106535118 (2021).
pubmed: 34140350
pmcid: 8271735
doi: 10.1073/pnas.2106535118
Gilliland, T. et al. Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines. Preprint at bioRxiv, https://doi.org/10.1101/2021.07.26.453840 (2021).
Gruell, H. et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat. Med. 28, 477–480 (2022).
pubmed: 35046572
pmcid: 8767537
doi: 10.1038/s41591-021-01676-0
Cheng, S. M. S. et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 28, 486–489 (2022).
pubmed: 35051989
doi: 10.1038/s41591-022-01704-7
Zou, J. et al. Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. Nat. Commun. 13, 852 (2022).
pubmed: 35140233
pmcid: 8828871
doi: 10.1038/s41467-022-28544-w
Rossler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent persons. N. Engl. J. Med. 386, 698–700 (2022).
pubmed: 35021005
doi: 10.1056/NEJMc2119236
Carreno, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602, 682–688 (2022).
pubmed: 35016197
doi: 10.1038/s41586-022-04399-5
Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).
pubmed: 35240676
pmcid: 9021018
doi: 10.1038/s41586-022-04594-4
Uraki, R. et al. Therapeutic efficacy of antibodies and antivirals against a SARS-CoV-2 Omicron variant. Research Square https://doi.org/10.21203/rs.3.rs-1240227/v1 (2022).
Hammond, J. et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N. Engl. J. Med. 386, 1397–1408 (2022).
pubmed: 35172054
doi: 10.1056/NEJMoa2118542
Unoh, Y. et al. Discovery of S-217622, a non-covalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512 (2022).
pubmed: 35352927
pmcid: 8982737
doi: 10.1021/acs.jmedchem.2c00117
Wahl, A. et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 591, 451–457 (2021).
pubmed: 33561864
pmcid: 7979515
doi: 10.1038/s41586-021-03312-w
Owen, D. R. et al. An oral SARS-CoV-2 M
pubmed: 34726479
doi: 10.1126/science.abl4784
Majumdar, S. & Sarkar, R. Mutational and phylogenetic analyses of the two lineages of the Omicron variant. J. Med. Virol. https://doi.org/10.1002/jmv.27558 (2021).
Vieillard-Baron, A. et al. Epidemiological characteristics and severity of Omicron variant cases in the APHP critical care units. Preprint at medRxiv https://doi.org/10.1101/2022.01.25.22269839 (2022).
Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).
pubmed: 35104837
pmcid: 8942856
doi: 10.1038/s41586-022-04474-x
Ferren, M. et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat. Commun. 12, 5809 (2021).
pubmed: 34608167
pmcid: 8490365
doi: 10.1038/s41467-021-26096-z
Tomris, I. et al. Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathog. 18, e1010340 (2022).
pubmed: 35255100
pmcid: 8930000
doi: 10.1371/journal.ppat.1010340
Case, J. et al. Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Preprint at bioRxiv https://doi.org/10.1101/2022.03.17.484787 (2022).
Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).
pubmed: 32165541
pmcid: 7132130
doi: 10.1073/pnas.2002589117
Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021).
pubmed: 33664494
pmcid: 8058618
doi: 10.1038/s41591-021-01294-w
Corbett, K. S. et al. mRNA-1273 protects against SARS-CoV-2 Beta infection in nonhuman primates. Nat. Immunol. 22, 1306–1315 (2021).
pubmed: 34417590
pmcid: 8488000
doi: 10.1038/s41590-021-01021-0
Yasuhara, A. et al. Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nat. Microbiol. 4, 1024–1034 (2019).
pubmed: 30886361
doi: 10.1038/s41564-019-0401-1
Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).
pubmed: 32838945
doi: 10.1016/j.virol.2020.05.015
Chung, M. et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295, 202–207 (2020).
pubmed: 32017661
doi: 10.1148/radiol.2020200230
Itokawa, K., Sekizuka, T., Hashino, M., Tanaka, R. & Kuroda, M. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS ONE 15, e0239403 (2020).
pubmed: 32946527
pmcid: 7500614
doi: 10.1371/journal.pone.0239403
Quick, J. nCoV-2019 sequencing protocol. protocols.io https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye (2020).
Itokawa, K. et al. nCoV-2019 sequencing protocol for Illumina V.5. protocols.io https://www.protocols.io/view/ncov-2019-sequencing-protocol-for-illumina-b2msqc6e?version_warning=no (2021).
Yamayoshi, S. et al. Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. eClinicalMedicine 32, 100734 (2021).
pubmed: 33589882
pmcid: 7877219
doi: 10.1016/j.eclinm.2021.100734