Functions and Regulation of Meiotic HORMA-Domain Proteins.


Journal

Genes
ISSN: 2073-4425
Titre abrégé: Genes (Basel)
Pays: Switzerland
ID NLM: 101551097

Informations de publication

Date de publication:
27 04 2022
Historique:
received: 11 03 2022
revised: 20 04 2022
accepted: 22 04 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 1 6 2022
Statut: epublish

Résumé

During meiosis, homologous chromosomes must recognize, pair, and recombine with one another to ensure the formation of inter-homologue crossover events, which, together with sister chromatid cohesion, promote correct chromosome orientation on the first meiotic spindle. Crossover formation requires the assembly of axial elements, proteinaceous structures that assemble along the length of each chromosome during early meiosis, as well as checkpoint mechanisms that control meiotic progression by monitoring pairing and recombination intermediates. A conserved family of proteins defined by the presence of a HORMA (HOp1, Rev7, MAd2) domain, referred to as HORMADs, associate with axial elements to control key events of meiotic prophase. The highly conserved HORMA domain comprises a flexible safety belt sequence, enabling it to adopt at least two of the following protein conformations: one closed, where the safety belt encircles a small peptide motif present within an interacting protein, causing its topological entrapment, and the other open, where the safety belt is reorganized and no interactor is trapped. Although functional studies in multiple organisms have revealed that HORMADs are crucial regulators of meiosis, the mechanisms by which HORMADs implement key meiotic events remain poorly understood. In this review, we summarize protein complexes formed by HORMADs, discuss their roles during meiosis in different organisms, draw comparisons to better characterize non-meiotic HORMADs (MAD2 and REV7), and highlight possible areas for future research.

Identifiants

pubmed: 35627161
pii: genes13050777
doi: 10.3390/genes13050777
pmc: PMC9141381
pii:
doi:

Substances chimiques

Cell Cycle Proteins 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Medical Research Council
ID : MC_U120097113
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC-A652-5PY60
Pays : United Kingdom

Références

Genes Dev. 2017 Sep 15;31(18):1880-1893
pubmed: 29021238
J Biol Chem. 2019 Oct 25;294(43):15733-15742
pubmed: 31484720
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26795-26803
pubmed: 33051298
Nucleic Acids Res. 2018 Jan 9;46(1):279-292
pubmed: 29186573
PLoS Genet. 2020 Sep 15;16(9):e1009048
pubmed: 32931493
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8):
pubmed: 33597306
Dev Cell. 2008 Feb;14(2):263-74
pubmed: 18267094
Nat Cell Biol. 2011 May;13(5):599-610
pubmed: 21478856
PLoS Biol. 2016 Feb 12;14(2):e1002369
pubmed: 26870961
PLoS One. 2010 Nov 30;5(11):e15128
pubmed: 21152103
Cell. 1999 Apr 30;97(3):313-24
pubmed: 10319812
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):E4734-E4743
pubmed: 28559338
Nat Struct Biol. 2000 Mar;7(3):224-9
pubmed: 10700282
Curr Biol. 2021 Sep 13;31(17):3915-3924.e9
pubmed: 34237269
Elife. 2015 Aug 10;4:
pubmed: 26258962
Cell. 2011 Aug 5;146(3):372-83
pubmed: 21816273
J Biol Chem. 2012 Sep 28;287(40):33847-52
pubmed: 22859296
Mol Cell. 2018 Oct 18;72(2):211-221.e3
pubmed: 30270110
Genetics. 2017 May;206(1):497-512
pubmed: 28249986
Mol Cell. 2017 Sep 21;67(6):1026-1036.e2
pubmed: 28844861
Dev Cell. 2011 Mar 15;20(3):353-63
pubmed: 21397846
Dev Cell. 2015 Jan 26;32(2):220-30
pubmed: 25579976
PLoS Genet. 2013;9(8):e1003674
pubmed: 23950729
Mol Cell Biochem. 2007 Oct;304(1-2):297-304
pubmed: 17541814
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8191-E8200
pubmed: 30111544
PLoS Genet. 2014 Jun 12;10(6):e1004419
pubmed: 24922507
Mol Cell. 2002 Jan;9(1):59-71
pubmed: 11804586
EMBO J. 2006 Mar 22;25(6):1273-84
pubmed: 16525508
Sci Adv. 2020 Oct 30;6(44):
pubmed: 33127680
EMBO J. 2011 Jun 10;30(14):2868-80
pubmed: 21666598
EMBO J. 2002 May 15;21(10):2496-506
pubmed: 12006501
J Biol Chem. 2021 Aug;297(2):100912
pubmed: 34174285
Nat Commun. 2020 Aug 28;11(1):4345
pubmed: 32859945
PLoS Biol. 2020 Aug 19;18(8):e3000817
pubmed: 32813728
EMBO J. 2017 Aug 15;36(16):2419-2434
pubmed: 28659378
Virology. 2003 Aug 15;313(1):224-34
pubmed: 12951035
J Biol Chem. 2020 Jan 3;295(1):250-262
pubmed: 31796627
Nucleic Acids Res. 2022 May 6;50(8):4545-4556
pubmed: 35412621
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19772-7
pubmed: 21041666
Mol Cell Biol. 2007 Apr;27(8):2861-9
pubmed: 17296730
Genetics. 1989 Mar;121(3):445-62
pubmed: 2653960
Genes Dev. 2005 Nov 15;19(22):2744-56
pubmed: 16291647
Front Cell Dev Biol. 2021 Jun 03;9:688878
pubmed: 34150782
Cell. 1998 Aug 7;94(3):387-98
pubmed: 9708740
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E44-53
pubmed: 24367111
Plant Cell. 2020 Apr;32(4):1218-1239
pubmed: 32024691
Plant Cell. 2013 Aug;25(8):2998-3009
pubmed: 23943860
EMBO J. 2020 Feb 3;39(3):e101625
pubmed: 31556459
Mol Biol Cell. 2005 Dec;16(12):5804-18
pubmed: 16221890
Cell. 1994 Jan 14;76(1):51-63
pubmed: 8287479
J Biol Chem. 2010 Apr 16;285(16):12299-307
pubmed: 20164194
Chromosoma. 2000;109(1-2):62-71
pubmed: 10855496
PLoS Genet. 2009 Oct;5(10):e1000702
pubmed: 19851446
Annu Rev Genet. 2014;48:187-214
pubmed: 25421598
Nat Commun. 2018 Feb 26;9(1):834
pubmed: 29483514
Genes Cells. 2012 Jun;17(6):439-54
pubmed: 22530760
Cold Spring Harb Perspect Biol. 2014 Oct 01;6(10):a016675
pubmed: 25274702
Elife. 2021 Jan 27;10:
pubmed: 33502312
Cell. 2007 Nov 16;131(4):744-55
pubmed: 18022368
Mol Cell Biol. 1998 Mar;18(3):1424-35
pubmed: 9488458
Elife. 2015 Apr 28;4:
pubmed: 25918846
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13808-13
pubmed: 11717438
Elife. 2019 Jan 18;8:
pubmed: 30657449
Cell. 1997 Feb 7;88(3):375-84
pubmed: 9039264
Dev Cell. 2014 Nov 24;31(4):503-11
pubmed: 25455309
J Biol Chem. 2017 Oct 27;292(43):17658-17667
pubmed: 28887307
Dev Cell. 2015 Oct 26;35(2):247-61
pubmed: 26506311
Acta Crystallogr D Struct Biol. 2018 Oct 1;74(Pt 10):1027-1038
pubmed: 30289413
PLoS Genet. 2014 Apr 24;10(4):e1004291
pubmed: 24762417
Genes Dev. 2008 Oct 15;22(20):2886-901
pubmed: 18923085
PLoS Genet. 2012 Feb;8(2):e1002485
pubmed: 22346761
Genes Dev. 2007 Sep 1;21(17):2220-33
pubmed: 17785529
Cell Death Dis. 2020 Jul 9;11(7):519
pubmed: 32647118
PLoS Biol. 2008 Mar 4;6(3):e50
pubmed: 18318601
Genes Dev. 2005 Nov 15;19(22):2727-43
pubmed: 16291646
J Biol Chem. 2009 Jul 17;284(29):19613-22
pubmed: 19443654
Curr Biol. 2020 Nov 16;30(22):4413-4424.e5
pubmed: 32916108
Genes Cells. 2010 Mar;15(3):281-96
pubmed: 20088965
J Biol Chem. 2011 Jun 17;286(24):21173-9
pubmed: 21525009
Genes Dev. 1999 Sep 1;13(17):2258-70
pubmed: 10485848
Elife. 2021 Dec 24;10:
pubmed: 34951404
Mol Cell. 2009 Nov 13;36(3):393-404
pubmed: 19917248
Nat Commun. 2020 Apr 24;11(1):1972
pubmed: 32332881
Mol Cell Biol. 2000 Sep;20(18):6646-58
pubmed: 10958662
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10577-82
pubmed: 27601671
J Cell Biol. 1997 Mar 10;136(5):957-67
pubmed: 9060462
Genes Cells. 2012 Nov;17(11):897-912
pubmed: 23039116
Genes Dev. 2009 Aug 1;23(15):1763-78
pubmed: 19574299
Curr Genet. 2021 Aug;67(4):553-565
pubmed: 33712914
Curr Biol. 2004 Apr 6;14(7):585-92
pubmed: 15062099
Nat Cell Biol. 2020 Jan;22(1):87-96
pubmed: 31915374
Nat Commun. 2014 Sep 18;5:4903
pubmed: 25232865
Neurogenetics. 2012 Aug;13(3):251-60
pubmed: 22660985
Curr Biol. 2020 Nov 2;30(21):4113-4127.e6
pubmed: 32857973
Biochem Biophys Res Commun. 2020 Oct 22;531(4):566-572
pubmed: 32811646
DNA Repair (Amst). 2018 Mar;63:25-38
pubmed: 29414051
PLoS Genet. 2013;9(8):e1003679
pubmed: 23990794
Mol Biol Cell. 2011 Jan 1;22(1):12-9
pubmed: 21119003
PLoS Genet. 2020 Jul 30;16(7):e1008904
pubmed: 32730253
PLoS Genet. 2010 Nov 04;6(11):e1001190
pubmed: 21079677
Cell. 2008 Mar 7;132(5):758-70
pubmed: 18329363
Curr Biol. 2021 Mar 8;31(5):R225-R227
pubmed: 33689714
Nucleic Acids Res. 2019 Nov 4;47(19):10166-10180
pubmed: 31665745
Curr Biol. 2015 Oct 19;25(20):R1002-18
pubmed: 26485365
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13647-13658
pubmed: 32499315
Science. 2005 Dec 9;310(5754):1683-6
pubmed: 16339446
PLoS Genet. 2020 Nov 11;16(11):e1008968
pubmed: 33175901
Mol Cell Biol. 2010 Apr;30(7):1570-81
pubmed: 20123974
Dev Cell. 2014 Nov 24;31(4):487-502
pubmed: 25446517
PLoS Genet. 2015 Jul 16;11(7):e1005372
pubmed: 26182244
Biol Reprod. 2013 Aug;89(2):29
pubmed: 23759310
Cell. 2007 Nov 16;131(4):730-43
pubmed: 18022367
Annu Rev Biochem. 2022 Jun 21;91:541-569
pubmed: 35041460
Nucleic Acids Res. 2020 Nov 18;48(20):11521-11535
pubmed: 32558910
Nat Cell Biol. 2016 Nov;18(11):1208-1220
pubmed: 27723721
Nature. 2018 Jul;559(7713):274-278
pubmed: 29973720
Trends Biochem Sci. 1998 Aug;23(8):284-6
pubmed: 9757827
PLoS Genet. 2021 Jul 14;17(7):e1009560
pubmed: 34260586
Genetics. 2016 Nov;204(3):987-997
pubmed: 27605049
Genes Dev. 2012 May 1;26(9):958-73
pubmed: 22549958
Trends Cell Biol. 2021 Aug;31(8):686-701
pubmed: 33962851

Auteurs

Josh P Prince (JP)

Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK.

Enrique Martinez-Perez (E)

Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK.
Faculty of Medicine, Imperial College London, London W12 0NN, UK.

Articles similaires

Meiosis Schizosaccharomyces Schizosaccharomyces pombe Proteins Spores, Fungal
Schizosaccharomyces Meiosis Schizosaccharomyces pombe Proteins Mitosis Epigenesis, Genetic

Clr4

Hyun-Soo Kim, Benjamin Roche, Sonali Bhattacharjee et al.
1.00
Schizosaccharomyces pombe Proteins Schizosaccharomyces Heterochromatin Ubiquitination Cell Cycle Proteins

Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy.

Leelabati Biswas, Katarzyna M Tyc, Mansour Aboelenain et al.
1.00
Aneuploidy Kinesins Female Humans Animals

Classifications MeSH