Retrieving a disrupted gene encoding phospholipase A for fibre enhancement in allotetraploid cultivated cotton.
Gossypium
Disrupted gene
Fibre elongation
Linolenic acid
Phospholipase A
Journal
Plant biotechnology journal
ISSN: 1467-7652
Titre abrégé: Plant Biotechnol J
Pays: England
ID NLM: 101201889
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
18
05
2022
received:
09
03
2022
accepted:
23
05
2022
pubmed:
29
5
2022
medline:
26
8
2022
entrez:
28
5
2022
Statut:
ppublish
Résumé
After polyploidization originated from one interspecific hybridization event in Gossypium, Gossypium barbadense evolved to produce extra-long staple fibres than Gossypium hirsutum (Upland cotton), which produces a higher fibre yield. The genomic diversity between G. barbadense and G. hirsutum thus provides a genetic basis for fibre trait variation. Recently, rapid accumulation of gene disruption or deleterious mutation was reported in allotetraploid cotton genomes, with unknown impacts on fibre traits. Here, we identified gene disruptions in allotetraploid G. hirsutum (18.14%) and G. barbadense (17.38%) through comparison with their presumed diploid progenitors. Relative to conserved genes, these disrupted genes exhibited faster evolution rate, lower expression level and altered gene co-expression networks. Within a module regulating fibre elongation, a hub gene experienced gene disruption in G. hirsutum after polyploidization, with a 2-bp deletion in the coding region of GhNPLA1D introducing early termination of translation. This deletion was observed in all of the 34 G. hirsutum landraces and 36 G. hirsutum cultivars, but not in 96% of 57 G. barbadense accessions. Retrieving the disrupted gene GhNPLA1D using its homoeolog GhNPLA1A achieved longer fibre length in G. hirsutum. Further enzyme activity and lipids analysis confirmed that GhNPLA1A encodes a typical phospholipase A and promotes cotton fibre elongation via elevating intracellular levels of linolenic acid and 34:3 phosphatidylinositol. Our work opens a strategy for identifying disrupted genes and retrieving their functions in ways that can provide valuable resources for accelerating fibre trait enhancement in cotton breeding.
Identifiants
pubmed: 35633313
doi: 10.1111/pbi.13862
pmc: PMC9398350
doi:
Substances chimiques
Phospholipases
EC 3.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1770-1785Informations de copyright
© 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Références
Nat Protoc. 2016 Sep;11(9):1650-67
pubmed: 27560171
Science. 2000 Nov 10;290(5494):1151-5
pubmed: 11073452
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Front Plant Sci. 2021 Dec 21;12:803736
pubmed: 34992626
Science. 2019 Aug 16;365(6454):658-664
pubmed: 31416957
Plant Physiol. 2013 May;162(1):39-51
pubmed: 23542150
Nat Plants. 2017 May 08;3:17064
pubmed: 28481332
Biochem Biophys Res Commun. 2012 Mar 23;419(4):779-81
pubmed: 22390928
Nat Genet. 2021 Jun;53(6):916-924
pubmed: 33859417
Nature. 2012 Dec 20;492(7429):423-7
pubmed: 23257886
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
Nat Biotechnol. 2015 May;33(5):531-7
pubmed: 25893781
Plant J. 2016 Mar;85(6):758-71
pubmed: 26932457
Plant J. 2010 Jun 1;62(6):989-1003
pubmed: 20345607
Plant Cell. 2011 Mar;23(3):1107-23
pubmed: 21447788
Nat Biotechnol. 2011 May;29(5):407-9
pubmed: 21552241
Nucleic Acids Res. 2014 Jan;42(Database issue):D1229-36
pubmed: 24203703
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Plant Biotechnol J. 2021 Jul;19(7):1325-1336
pubmed: 33448110
Nat Genet. 2020 May;52(5):516-524
pubmed: 32284579
Bioinformatics. 2007 Nov 1;23(21):2947-8
pubmed: 17846036
Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80
pubmed: 20451164
PLoS One. 2011;6(7):e21301
pubmed: 21779324
Plant Cell. 2003 Sep;15(9):1990-2002
pubmed: 12953106
Genome Res. 2002 Jan;12(1):17-25
pubmed: 11779827
Plant Cell. 2017 Aug;29(8):2027-2046
pubmed: 28747422
Cell Res. 2007 May;17(5):422-34
pubmed: 17387330
Mol Biol Evol. 2022 Feb 3;39(2):
pubmed: 35099532
Curr Opin Plant Biol. 2005 Apr;8(2):135-41
pubmed: 15752992
Theor Appl Genet. 2021 Oct;134(10):3249-3261
pubmed: 34240238
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Plant Physiol. 2015 Dec;169(4):2982-91
pubmed: 26474639
Nat Struct Mol Biol. 2009 Feb;16(2):107-13
pubmed: 19190664
Biotechniques. 2003 Feb;34(2):374-8
pubmed: 12613259
Nat Rev Genet. 2005 Nov;6(11):836-46
pubmed: 16304599
Plant Physiol. 2001 Dec;127(4):1361-6
pubmed: 11743074
Mol Biol Evol. 2011 Mar;28(3):1193-203
pubmed: 21059790
Nucleic Acids Res. 2010 Sep;38(16):e164
pubmed: 20601685
Mol Phylogenet Evol. 1995 Sep;4(3):298-313
pubmed: 8845966
Nat Genet. 2019 Apr;51(4):739-748
pubmed: 30886425
Mol Biol Evol. 1986 Sep;3(5):418-26
pubmed: 3444411
Mol Plant. 2015 Jun;8(6):911-21
pubmed: 25731673
Lipids. 2005 Aug;40(8):773-85
pubmed: 16296396
Front Plant Sci. 2022 Jan 21;13:773107
pubmed: 35126443
New Phytol. 2018 Jan;217(2):883-895
pubmed: 29034968
Fly (Austin). 2012 Apr-Jun;6(2):80-92
pubmed: 22728672
Genome Biol. 2019 Nov 14;20(1):238
pubmed: 31727128
Nat Genet. 2018 Jun;50(6):796-802
pubmed: 29736014
Genetics. 2012 Nov;192(3):763-74
pubmed: 23135324
Biomol Concepts. 2013 Oct;4(5):527-32
pubmed: 25436595
Plant Cell. 2007 Nov;19(11):3692-704
pubmed: 17993622
Nat Plants. 2021 Jun;7(6):774-786
pubmed: 34045708