GWAS Case Studies in Wheat.
Eigen-GWAS
Environmental GWAS
Epistatic interactions
Haplotypes
MetaGWAS
Multilocus GWAS
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
31
5
2022
pubmed:
1
6
2022
medline:
3
6
2022
Statut:
ppublish
Résumé
With the advancements in next-generation sequencing technologies, leading to millions of single nucleotide polymorphisms in all crop species including wheat, genome-wide association study (GWAS) has become a leading approach for trait dissection. In wheat, GWAS has been conducted for a plethora of traits and more and more studies are being conducted and reported in journals. While application of GWAS has become a routine in wheat using the standardized approaches, there has been a great leap forward using newer models and combination of GWAS with other sets of data. This chapter has reviewed all these latest advancements in GWAS in wheat by citing the most important studies and their outputs. Specially, we have focused on studies that conducted meta-GWAS, multilocus GWAS, haplotype-based GWAS, Environmental- and Eigen-GWAS, and/or GWAS combined with gene regulatory network and pathway analyses or epistatic interactions analyses; all these have taken the association mapping approach to new heights in wheat.
Identifiants
pubmed: 35641773
doi: 10.1007/978-1-0716-2237-7_19
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
341-351Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Ganal MW, Polley A, Graner EM et al (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37:821–828
pubmed: 23107918
doi: 10.1007/s12038-012-9225-3
You Q, Yang X, Peng Z et al (2019) Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci 6(9):104
Poland JA, Brown PJ, Sorrells ME et al (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253
pubmed: 22389690
pmcid: 3289635
doi: 10.1371/journal.pone.0032253
Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110:8057–8062
pubmed: 23630259
pmcid: 3657823
doi: 10.1073/pnas.1217133110
Wang SC, Wong D, Forrest K et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796
pubmed: 24646323
pmcid: 4265271
doi: 10.1111/pbi.12183
Zhou S, Zhang J, Che Y et al (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotech J 16:818–827
doi: 10.1111/pbi.12831
Rasheed A, Xia X (2019) From markers to genome-based breeding in wheat. Theor Appl Genet 132:767–784
pubmed: 30673804
doi: 10.1007/s00122-019-03286-4
Sehgal D, Autrique E, Singh RP et al (2017) Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci Rep 7:41578
pubmed: 28145508
pmcid: 5286416
doi: 10.1038/srep41578
Sehgal D, Mondal S, Guzman C et al (2019) Validation of candidate gene-based markers and identification of novel loci for thousand-grain weight in spring bread wheat. Front Plant Sci 10:1189
pubmed: 31616457
pmcid: 6775465
doi: 10.3389/fpls.2019.01189
Sehgal D, Rosyara U, Mondal S et al (2020a) Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat. Front Plant Sci 11:197
pubmed: 32194596
pmcid: 7064468
doi: 10.3389/fpls.2020.00197
Sehgal D, Mondal S, Crespo-Herrera L et al (2020b) Haplotype-based, genome-wide association study reveals stable genomic regions for grain yield in CIMMYT spring bread wheat. Front Genet 3(11):589490
doi: 10.3389/fgene.2020.589490
Sehgal D, Vikram P, Sansaloni CP et al (2015) Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS One 10:e0132112
pubmed: 26176697
pmcid: 4503568
doi: 10.1371/journal.pone.0132112
Sansaloni C, Franco J, Santos B et al (2020) Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat Commun 11:4572
pubmed: 32917907
pmcid: 7486412
doi: 10.1038/s41467-020-18404-w
Gupta PK, Balyan HS et al (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7:5
doi: 10.3390/agronomy7010005
Tshikunde NM, Mashilo J, Shimelis H et al (2019) Agronomic and physiological traits, and associated quantitative trait loci (qtl) affecting yield response in wheat (Triticum aestivum L.): a review. Front Plant Sci 10(1428)
Mondal S, Sallam A, Sehgal D et al (2021) In: Kole C (ed) Genomic designing for abiotic stress resistant cereal crops. Springer Nature, Cham, p XXX
Hussain B, Akpınar BA, Alaux M et al (2021) Wheat genomics and breeding: bridging the gap. AgriRxiv , pp 57, pp ref. 296
Evangelou E, Ioannidis JPA (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389
pubmed: 23657481
doi: 10.1038/nrg3472
Bolormaa S, Pryce JE, Reverter A et al (2014) A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet 10:e1004198
pubmed: 24675618
pmcid: 3967938
doi: 10.1371/journal.pgen.1004198
Battenfield SD, Sheridan JL, Silva LDCE et al (2018) Breeding-assisted genomics: applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS One 13:e0204757
pubmed: 30496187
pmcid: 6264898
doi: 10.1371/journal.pone.0204757
Acuña-Galindo MA, Mason RE, Subramanian NK et al (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492
doi: 10.2135/cropsci2013.11.0793
Griffiths S, Simmonds J, Leverington M et al (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395
pubmed: 19430758
doi: 10.1007/s00122-009-1046-x
Soriano JM, Alvaro F (2019) Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 9:10537
pubmed: 31332216
pmcid: 6646344
doi: 10.1038/s41598-019-47038-2
Wang SB, Feng JY, Ren WL et al (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444
pubmed: 26787347
pmcid: 4726296
doi: 10.1038/srep19444
Zhang J, Feng J, Ni Y et al (2017) pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity 118(6):517
pubmed: 28295030
pmcid: 5436030
doi: 10.1038/hdy.2017.8
Tamba CL, Zhang YM (2018) A fast mrMLM algorithm for multi-locus genome-wide association studies. BioRxiv 341784
Jaiswal V, Gahlaut V, Meher PK et al (2016) Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat (T. aestivum L.). PLoS One 11(7):e0159343
pubmed: 27441835
pmcid: 4956103
doi: 10.1371/journal.pone.0159343
Kumar J, Saripalli G, Gahlaut V et al (2018) Genetics of Fe, Zn, β-carotene, GPC and yield traits in bread wheat (Triticum aestivum L.) using multi-locus and multi-traits GWAS. Euphytica 214:219
doi: 10.1007/s10681-018-2284-2
Chaurasia S, Singh AK, Songachan LS et al (2020) Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 112(6):4608–4621
pubmed: 32771624
doi: 10.1016/j.ygeno.2020.08.006
Yang Y, Chai Y, Zhang X et al (2020) Multi-locus gwas of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Front Plant Sci 11:1091
pubmed: 32849679
pmcid: 7411135
doi: 10.3389/fpls.2020.01091
Safdar LB, Andleeb T, Latif S et al (2020) Genome-wide association study and qtl meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Front Plant Sci 11:70
pubmed: 32133017
pmcid: 7041172
doi: 10.3389/fpls.2020.00070
Muhammad A, Li J, Hu W et al (2021) Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using different GWAS models. Sci Rep 11:6767
pubmed: 33762669
pmcid: 7990932
doi: 10.1038/s41598-021-86127-z
Thrash A, Tang JD, DeOrnellis M et al (2020) PAST: the pathway association studies tool to infer biological meaning from GWAS datasets. Plan Theory 9:58
Alqudah A, Haile J, Alomari D et al (2020) Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat. Sci Rep 10:2098
pubmed: 32034248
pmcid: 7005900
doi: 10.1038/s41598-020-59004-4
Behrouzi P, Arends D, Wit EC (2017) Netgwas: an R package for network-based genome-wide association studies. arXiv:1710.01236
Li L, Peng Z, Mao X et al (2019) Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann Bot 124(6):993–1006
pubmed: 31329816
pmcid: 6881226
doi: 10.1093/aob/mcz041
Manolio T, Collins F, Cox N et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753
pubmed: 19812666
pmcid: 2831613
doi: 10.1038/nature08494
Reif JC, Maurer HP, Korzun V et al (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283
pubmed: 21476040
doi: 10.1007/s00122-011-1583-y
Muqaddasi QH, Brassac J, Ebmeyer E et al (2020) Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci Rep 10:12541
pubmed: 32719416
pmcid: 7385145
doi: 10.1038/s41598-020-69381-5
Sehgal D, Dreisigacker S (2019) Haplotypes-based genetic analysis: benefits and challenges. Vav J Genet Breed 23:803–808
doi: 10.18699/VJ19.37-o
Singh S, Vikram P, Sehgal D et al (2018) Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Sci Rep 8:12527
pubmed: 30131572
pmcid: 6104032
doi: 10.1038/s41598-018-30667-4
Li F, Wen W, Liu J et al (2019) Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol 19:168
pubmed: 31035920
pmcid: 6489268
doi: 10.1186/s12870-019-1781-3
Afzal F, Li H, Gul Kazi A et al (2019) Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3 (Bethesda) 9:1957–1973
pmcid: 6553533
doi: 10.1534/g3.119.400010
Shokat S, Sehgal D, Fulai L et al (2020) GWAS analysis of wheat pre-breeding germplasm for terminal drought stress using next generation sequencing technology. Int J Mol Sci 21:3156
pmcid: 7247584
doi: 10.3390/ijms21093156
Yu S, Wu J, Wang M et al (2020) Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J 8:1011–1024
doi: 10.1016/j.cj.2020.03.007
Hu P, Zheng Q, Luo Q et al (2021) Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol 21:27
pubmed: 33413113
pmcid: 7792188
doi: 10.1186/s12870-020-02799-1
N’Diaye A, Haile JK, Cory AT et al (2017) Single marker and haplotype-based association analysis of semolina and pasta colour in elite durum wheat breeding lines using a high-density consensus map. PLoS One 12:e0170941
pubmed: 28135299
pmcid: 5279799
doi: 10.1371/journal.pone.0170941
Ledesma-Ramírez L, Solís-Moya E, Iturriaga G et al (2019) GWAS to identify genetic loci for resistance to yellow rust in wheat pre-breeding lines derived from diverse exotic crosses. Front Plant Sci 10:1390
pubmed: 31781137
pmcid: 6831551
doi: 10.3389/fpls.2019.01390
Vikram P, Sehgal D, Sharma A et al (2021) Genome-wide association analysis of Mexican bread wheat landraces for resistance to yellow and stem rust, PLoS One. 6(1):e0246015
Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229
pubmed: 12029063
doi: 10.1126/science.1069424
Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81:559–575
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Chen GB, Lee SH, Zhu ZX et al (2016) EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations. Heredity 117(1):51–61
pubmed: 27142779
pmcid: 4901357
doi: 10.1038/hdy.2016.25
Sharma R, Cockram J, Gardner K et al (2020) Trends of genetic changes uncovered by Env- and Eigen-GWAS in wheat and barley. https://doi.org/10.1101/2020.11.27.400333