Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors.
Journal
Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944
Informations de publication
Date de publication:
02 08 2022
02 08 2022
Historique:
received:
23
06
2021
revised:
23
05
2022
accepted:
27
05
2022
pubmed:
2
6
2022
medline:
15
11
2022
entrez:
1
6
2022
Statut:
ppublish
Résumé
Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges. We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6-12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases. https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author. Supplementary data are available at Bioinformatics online.
Identifiants
pubmed: 35642899
pii: 6596597
doi: 10.1093/bioinformatics/btac367
pmc: PMC9344857
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3677-3683Subventions
Organisme : NIDDK NIH HHS
ID : K08 DK107781
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA062924
Pays : United States
Organisme : US National Institutes of Health/National Cancer Institute
ID : CA006973
Organisme : NIDDK NIH HHS
ID : K08 DK107781
Pays : United States
Organisme : Allegheny Health Network-Johns Hopkins Cancer Research Fund
Organisme : Goldman Pancreatic Cancer Research Center
Organisme : Johns Hopkins Discovery Award
Organisme : Medical Research Foundation (RBS)
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
Genome Biol. 2015 May 06;16:91
pubmed: 25944252
PLoS Comput Biol. 2014 Aug 07;10(8):e1003665
pubmed: 25102416
Genome Biol. 2015 Feb 13;16:35
pubmed: 25786235
Nat Commun. 2017 Feb 27;8:4565
pubmed: 28240289
PLoS Comput Biol. 2015 Oct 05;11(10):e1004416
pubmed: 26436540
Nat Methods. 2014 Apr;11(4):396-8
pubmed: 24633410
Nat Commun. 2017 Jan 31;8:14114
pubmed: 28139641
Bioinformatics. 2015 Jun 15;31(12):i62-70
pubmed: 26072510
J Mach Learn Res. 2016 Apr;17(30):1-39
pubmed: 28331463
Gastroenterology. 2019 Oct;157(4):1123-1137.e22
pubmed: 31175866
Bioinformatics. 2017 Jul 15;33(14):i152-i160
pubmed: 28882002
Sci Transl Med. 2011 Jul 20;3(92):92ra66
pubmed: 21775669
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5528-37
pubmed: 27573852
Nat Genet. 2014 Mar;46(3):225-233
pubmed: 24487277
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2140-5
pubmed: 26858460
Gut. 2021 May;70(5):928-939
pubmed: 33028669
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14254-61
pubmed: 18787111
Trends Cancer. 2017 Aug;3(8):546-550
pubmed: 28780931
Clin Cancer Res. 2000 Aug;6(8):2969-72
pubmed: 10955772
Gut. 2018 Sep;67(9):1652-1662
pubmed: 29500184