Intracellular Acetyl CoA Potentiates the Therapeutic Efficacy of Antitumor CD8+ T Cells.
Journal
Cancer research
ISSN: 1538-7445
Titre abrégé: Cancer Res
Pays: United States
ID NLM: 2984705R
Informations de publication
Date de publication:
18 07 2022
18 07 2022
Historique:
received:
25
11
2021
revised:
20
04
2022
accepted:
20
05
2022
pubmed:
2
6
2022
medline:
20
7
2022
entrez:
1
6
2022
Statut:
ppublish
Résumé
Effector CD8+ T cells rely primarily on glucose metabolism to meet their biosynthetic and functional needs. However, nutritional limitations in the tumor microenvironment can cause T-cell hyporesponsiveness. Therefore, T cells must acquire metabolic traits enabling sustained effector function at the tumor site to elicit a robust antitumor immune response. Here, we report that IL12-stimulated CD8+ T cells have elevated intracellular acetyl CoA levels and can maintain IFNγ levels in nutrient-deprived, tumor-conditioned media (TCM). Pharmacological and metabolic analyses demonstrated an active glucose-citrate-acetyl CoA circuit in IL12-stimulated CD8+ T cells supporting an intracellular pool of acetyl CoA in an ATP-citrate lyase (ACLY)-dependent manner. Intracellular acetyl CoA levels enhanced histone acetylation, lipid synthesis, and IFNγ production, improving the metabolic and functional fitness of CD8+ T cells in tumors. Pharmacological inhibition or genetic knockdown of ACLY severely impaired IFNγ production and viability of CD8+ T cells in nutrient-restricted conditions. Furthermore, CD8+ T cells cultured in high pyruvate-containing media in vitro acquired critical metabolic features of IL12-stimulated CD8+ T cells and displayed improved antitumor potential upon adoptive transfer in murine lymphoma and melanoma models. Overall, this study delineates the metabolic configuration of CD8+ T cells required for stable effector function in tumors and presents an affordable approach to promote the efficacy of CD8+ T cells for adoptive T-cell therapy. IL12-mediated metabolic reprogramming increases intracellular acetyl CoA to promote the effector function of CD8+ T cells in nutrient-depleted tumor microenvironments, revealing strategies to potentiate the antitumor efficacy of T cells.
Identifiants
pubmed: 35648389
pii: 699262
doi: 10.1158/0008-5472.CAN-21-4052
pmc: PMC7613107
mid: EMS145666
doi:
Substances chimiques
Interleukin-12
187348-17-0
Acetyl Coenzyme A
72-89-9
ATP Citrate (pro-S)-Lyase
EC 2.3.3.8
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2640-2655Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : DBT-Wellcome Trust India Alliance
ID : IA/I/19/1/504277
Pays : India
Organisme : NCI NIH HHS
ID : R01 CA236379
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA250458
Pays : United States
Informations de copyright
©2022 The Authors; Published by the American Association for Cancer Research.
Références
Cell. 2015 Sep 10;162(6):1229-41
pubmed: 26321679
Blood. 1997 Oct 1;90(7):2541-8
pubmed: 9326219
Nat Immunol. 2016 Jan;17(1):95-103
pubmed: 26523864
J Biol Chem. 2000 Apr 28;275(17):12497-502
pubmed: 10777536
Nat Immunol. 2007 Jul;8(7):723-31
pubmed: 17546034
Elife. 2021 Nov 02;10:
pubmed: 34726598
Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6
pubmed: 17202168
Cell Rep. 2019 Aug 13;28(7):1879-1893.e7
pubmed: 31412253
Elife. 2017 Aug 15;6:
pubmed: 28826492
Nat Metab. 2020 Aug;2(8):703-716
pubmed: 32747793
Nat Immunol. 2013 Oct;14(10):1064-72
pubmed: 23955661
Nat Immunol. 2017 Nov;18(11):1197-1206
pubmed: 28920951
Front Immunol. 2020 Oct 15;11:575597
pubmed: 33178203
Science. 2003 Nov 7;302(5647):1041-3
pubmed: 14605368
Nature. 2019 Jul;571(7765):403-407
pubmed: 31217581
Arch Biochem Biophys. 1969 Dec;135(1):209-17
pubmed: 5362924
PLoS Comput Biol. 2013;9(8):e1003118
pubmed: 23950696
Nature. 2018 Jul;559(7713):264-268
pubmed: 29973721
Science. 2016 Oct 28;354(6311):481-484
pubmed: 27708054
Nucleic Acids Res. 2012 May;40(10):4288-97
pubmed: 22287627
Anal Chem. 2006 Feb 1;78(3):779-87
pubmed: 16448051
Genome Biol. 2014;15(12):550
pubmed: 25516281
Sci Immunol. 2020 Oct 30;5(52):
pubmed: 33127608
Br J Cancer. 2021 May;124(11):1759-1776
pubmed: 33782566
Metabolomics. 2018 Feb 27;14(4):41
pubmed: 30830340
Cell Metab. 2018 Jan 9;27(1):85-100.e8
pubmed: 29129787
Cancer Discov. 2018 Sep;8(9):1069-1086
pubmed: 30115704
Nat Rev Immunol. 2019 May;19(5):324-335
pubmed: 30820043
Cell. 2017 Oct 5;171(2):385-397.e11
pubmed: 28919076
Front Immunol. 2014 Jul 28;5:358
pubmed: 25120544
Nucleic Acids Res. 2019 May 7;47(8):e47
pubmed: 30783653
Immunity. 2018 Aug 21;49(2):375-376
pubmed: 30134202
Cell. 2017 May 4;169(4):570-586
pubmed: 28475890
Nature. 2004 Jun 17;429(6993):771-6
pubmed: 15175761
Nature. 1999 Jan 21;397(6716):263-6
pubmed: 9930702
Cell Metab. 2012 Jul 3;16(1):9-17
pubmed: 22768835
Eur J Immunol. 2005 Nov;35(11):3297-306
pubmed: 16220539
Cancer Res. 2012 Aug 1;72(15):3709-14
pubmed: 22787121
Cell. 2013 Jun 6;153(6):1239-51
pubmed: 23746840
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nat Rev Immunol. 2021 Dec;21(12):785-797
pubmed: 33927375
J Immunol. 2004 Jan 1;172(1):114-22
pubmed: 14688316
J Immunol. 2011 May 15;186(10):5533-7
pubmed: 21498666
Nat Immunol. 2006 Dec;7(12):1317-25
pubmed: 17086188
Blood. 2006 Nov 15;108(10):3363-70
pubmed: 16868257
Cancer Res. 2014 Nov 1;74(21):6048-59
pubmed: 25205101
Clin Cancer Res. 2016 Apr 15;22(8):1856-64
pubmed: 27084739
Nat Commun. 2016 Jun 30;7:11960
pubmed: 27357947
Nat Immunol. 2013 Oct;14(10):1014-22
pubmed: 24048123
Free Radic Biol Med. 2012 Aug 1;53(3):421-36
pubmed: 22580150
Cytokine Growth Factor Rev. 2002 Apr;13(2):155-68
pubmed: 11900991
Cell. 2014 Dec 18;159(7):1578-90
pubmed: 25525876
Science. 2015 Apr 3;348(6230):56-61
pubmed: 25838373
Immunity. 2018 Dec 18;49(6):1148-1161.e7
pubmed: 30552023