A tissue-like neurotransmitter sensor for the brain and gut.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
15
06
2020
accepted:
04
03
2022
entrez:
1
6
2022
pubmed:
2
6
2022
medline:
7
6
2022
Statut:
ppublish
Résumé
Neurotransmitters play essential roles in regulating neural circuit dynamics both in the central nervous system as well as at the peripheral, including the gastrointestinal tract
Identifiants
pubmed: 35650358
doi: 10.1038/s41586-022-04615-2
pii: 10.1038/s41586-022-04615-2
pmc: PMC9210986
mid: NIHMS1804446
doi:
Substances chimiques
Elastomers
0
Neurotransmitter Agents
0
Serotonin
333DO1RDJY
Graphite
7782-42-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
94-101Subventions
Organisme : NIDA NIH HHS
ID : R01 DA045664
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL150566
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH116904
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).
pubmed: 29853555
pmcid: 6287765
doi: 10.1126/science.aat4422
Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).
pubmed: 30190311
pmcid: 6663484
doi: 10.1126/science.aao6750
Kishida, K. T. et al. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc. Natl Acad. Sci. 113, 200–205 (2016).
pubmed: 26598677
doi: 10.1073/pnas.1513619112
Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).
pubmed: 15152198
doi: 10.1038/nrn1406
Naughton, M., Mulrooney, J. B. & Leonard, B. E. A review of the role of serotonin receptors in psychiatric disorders. Hum. Psychopharmacol. 15, 397–415 (2000).
pubmed: 12404302
doi: 10.1002/1099-1077(200008)15:6<397::AID-HUP212>3.0.CO;2-L
Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703 (2001).
pubmed: 11584307
doi: 10.1038/35094560
Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).
pubmed: 23942470
doi: 10.1038/nrn3381
Cummings, J. L. Depression and Parkinson’s disease: a review. Am. J. Psychiatry 149, 443–454 (1992).
pubmed: 1372794
doi: 10.1176/ajp.149.4.443
Spohn, S. N. & Mawe, G. M. Non-conventional features of peripheral serotonin signalling-the gut and beyond. Nat. Rev. Gastroenterol. Hepatol. 14, 412–420 (2017).
pubmed: 28487547
pmcid: 5672796
doi: 10.1038/nrgastro.2017.51
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).
pubmed: 22392290
doi: 10.1038/nrgastro.2012.32
Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).
pubmed: 23314171
pmcid: 4469972
doi: 10.1038/nmeth.2333
Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).
pubmed: 30007419
pmcid: 6092020
doi: 10.1016/j.cell.2018.06.042
Robinson, D. L., Venton, B. J., Heien, M. L. A. V. & Wightman, R. M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49, 1763–1773 (2003).
pubmed: 14500617
doi: 10.1373/49.10.1763
Hashemi, P., Dankoski, E. C., Petrovic, J., Keithley, R. B. & Wightman, R. M. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81, 9462–9471 (2009).
pubmed: 19827792
pmcid: 2783829
doi: 10.1021/ac9018846
Schwerdt, H. N. et al. Long-term dopamine neurochemical monitoring in primates. Proc. Natl Acad. Sci. 114, 13260–13265 (2017).
pubmed: 29158415
pmcid: 5740663
doi: 10.1073/pnas.1713756114
Taylor, I. M. et al. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens. Bioelectron. 89, 400–410 (2017).
pubmed: 27268013
doi: 10.1016/j.bios.2016.05.084
Clark, J. J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7, 126–129 (2010).
pubmed: 20037591
doi: 10.1038/nmeth.1412
Moran, R. J. et al. The protective action encoding of serotonin transients in the human brain. Neuropsychopharmacology 43, 1425–1435 (2018).
pubmed: 29297512
pmcid: 5916372
doi: 10.1038/npp.2017.304
Bang, D. et al. Sub-second dopamine and serotonin signaling in human striatum during perceptual decision-making. Neuron 108, 999–1010.e6 (2020).
pubmed: 33049201
pmcid: 7736619
doi: 10.1016/j.neuron.2020.09.015
Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).
pubmed: 25574019
doi: 10.1126/science.1260318
Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).
pubmed: 33199897
doi: 10.1038/s41593-020-00739-8
Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).
pubmed: 30833706
pmcid: 6531316
doi: 10.1038/s41583-019-0140-6
Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).
pubmed: 32989277
doi: 10.1038/s41563-020-00814-2
Frank, J. A., Antonini, M. J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).
pubmed: 31406326
pmcid: 7243676
doi: 10.1038/s41587-019-0198-8
Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14, 156–160 (2019).
pubmed: 30598525
doi: 10.1038/s41565-018-0331-8
Terem, I. et al. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80, 2549–2559 (2018).
pubmed: 29845645
pmcid: 6269230
doi: 10.1002/mrm.27236
Spencer, K. C. et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7, 1952 (2017).
pubmed: 28512291
pmcid: 5434064
doi: 10.1038/s41598-017-02107-2
Schwerdt, H. N. et al. Subcellular probes for neurochemical recording from multiple brain sites. Lab Chip 17, 1104–1115 (2017).
pubmed: 28233001
pmcid: 5572650
doi: 10.1039/C6LC01398H
Mazzuoli-Weber, G. & Schemann, M. Mechanosensitivity in the enteric nervous system. Front. Cell. Neurosci. 9, 408 (2015).
pubmed: 26528136
pmcid: 4602087
doi: 10.3389/fncel.2015.00408
Patel, B. A., Bian, X., Quaiserová-Mocko, V., Galligan, J. J. & Swain, G. M. In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41–47 (2007).
pubmed: 17180178
doi: 10.1039/B611920D
Osorio, N. & Delmas, P. Patch clamp recording from enteric neurons in situ. Nat. Protoc. 6, 15–27 (2011).
pubmed: 21212776
doi: 10.1038/nprot.2010.172
Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 8, 239–261 (2015).
doi: 10.1146/annurev-anchem-071114-040426
Xu, C., Wu, F., Yu, P. & Mao, L. In vivo electrochemical sensors for neurochemicals: recent update. ACS Sens. 4, 3102–3118 (2019).
pubmed: 31718157
doi: 10.1021/acssensors.9b01713
Kinloch, I. A., Suhr, J., Lou, J., Young, R. J. & Ajayan, P. M. Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018).
pubmed: 30385571
doi: 10.1126/science.aat7439
Sun, D. et al. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sens. Actuators B Chem. 259, 433–442 (2018).
doi: 10.1016/j.snb.2017.12.037
Yang, W. et al. Enhancing electrochemical detection of dopamine via dumbbell-like FePt–Fe
pubmed: 28045168
doi: 10.1039/C6NR08507E
Fernandes, D. M. et al. Novel electrochemical sensor based on N-doped carbon nanotubes and Fe
pubmed: 25086716
doi: 10.1016/j.jcis.2014.06.050
Salinas-Hernández, X. I. et al. Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. eLife 7, e38818 (2018).
pubmed: 30421719
pmcid: 6257816
doi: 10.7554/eLife.38818
Bertrand, P. P., Hu, X., Mach, J. & Bertrand, R. L. Serotonin (5-HT) release and uptake measured by real-time electrochemical techniques in the rat ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1228–G1236 (2008).
pubmed: 18927211
doi: 10.1152/ajpgi.90375.2008
Bertrand, P. P. Real-time measurement of serotonin release and motility in guinea pig ileum. J. Physiol. 577, 689–704 (2006).
pubmed: 16959854
pmcid: 1890433
doi: 10.1113/jphysiol.2006.117804
Bertrand, P. P. & Bertrand, R. L. Serotonin release and uptake in the gastrointestinal tract. Auton. Neurosci. 153, 47–57 (2010).
pubmed: 19729349
doi: 10.1016/j.autneu.2009.08.002
Bertrand, P. P. Real-time detection of serotonin release from enterochromaffin cells of the guinea-pig ileum. Neurogastroenterol. Motil. 16, 511–514 (2004).
pubmed: 15500507
doi: 10.1111/j.1365-2982.2004.00572.x
Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).
pubmed: 23797870
pmcid: 4048923
doi: 10.1038/nrgastro.2013.105
Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).
pubmed: 17241888
doi: 10.1053/j.gastro.2006.11.002
Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702 (1990).
pubmed: 1688816
doi: 10.1016/0016-5085(90)90290-H
Linden, D. R., Chen, J. X., Gershon, M. D., Sharkey, K. A. & Mawe, G. M. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, 761–768 (2003).
doi: 10.1152/ajpgi.00488.2002
Padmanabhan, P., Grosse, J., Asad, A. B. M. A., Radda, G. K. & Golay, X. Gastrointestinal transit measurements in mice with
pubmed: 23915679
pmcid: 3737085
doi: 10.1186/2191-219X-3-60
Singh, M. K. & Bandyopadhyay, D. Design and synthesis of nanoporous perylene bis-imide linked metalloporphyrin frameworks and their catalytic activity. J. Chem. Sci. 128, 1–8 (2016).
doi: 10.1007/s12039-015-0994-8
Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).
pubmed: 25493446
doi: 10.1038/ncomms6714
Metscher, B. D. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology 9, 11 (2009).
pubmed: 19545439
pmcid: 2717911
doi: 10.1186/1472-6793-9-11
Roberts, J. G. & Sombers, L. A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal. Chem. 90, 490–504 (2018).
pubmed: 29182309
doi: 10.1021/acs.analchem.7b04732
Howard, C. D., Li, H., Geddes, C. E. & Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron 93, 1436–1450.e8 (2017).
pubmed: 28285820
pmcid: 5393307
doi: 10.1016/j.neuron.2017.02.029
Stamford, J. A., Kruk, Z. L. & Millar, J. Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data. Brain Res. 515, 173–180 (1990).
pubmed: 2357555
doi: 10.1016/0006-8993(90)90593-Z
Swamy, B. E. K. & Venton, B. J. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132, 876–884 (2007).
pubmed: 17710262
doi: 10.1039/b705552h
Jackson, B. P. & Mark Wightman, R. Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res. 674, 163–166 (1995).
pubmed: 7773688
doi: 10.1016/0006-8993(95)00019-M
Tatem, K. S. et al. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J. Vis. Exp. 29, 51785 (2014).
Lynch, J. J., Castagné, V., Moser, P. C. & Mittelstadt, S. W. Comparison of methods for the assessment of locomotor activity in rodent safety pharmacology studies. J. Pharmacol. Toxicol. Methods 64, 74–80 (2011).
pubmed: 21406241
doi: 10.1016/j.vascn.2011.03.003
Hoibian, E., Florens, N., Koppe, L., Vidal, H. & Soulage, C. O. Distal colon motor dysfunction in mice with chronic kidney disease: putative role of uremic toxins. Toxins 10, 204 (2018).
pmcid: 5983260
doi: 10.3390/toxins10050204
Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).
pubmed: 28569761
doi: 10.1038/nprot.2017.044
Tainaka, K. et al. Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep. 24, 2196–2210.e9 (2018).
pubmed: 30134179
doi: 10.1016/j.celrep.2018.07.056
Swaminathan, M. et al. Video imaging and spatiotemporal maps to analyze gastrointestinal motility in mice. J. Vis. Exp. 2016, e53828 (2016).
Spear, E. T. et al. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neurogastroenterol. Motil. 30, e13349 (2018).
pubmed: 29644797
pmcid: 6153444
doi: 10.1111/nmo.13349