A tissue-like neurotransmitter sensor for the brain and gut.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
06 2022
Historique:
received: 15 06 2020
accepted: 04 03 2022
entrez: 1 6 2022
pubmed: 2 6 2022
medline: 7 6 2022
Statut: ppublish

Résumé

Neurotransmitters play essential roles in regulating neural circuit dynamics both in the central nervous system as well as at the peripheral, including the gastrointestinal tract

Identifiants

pubmed: 35650358
doi: 10.1038/s41586-022-04615-2
pii: 10.1038/s41586-022-04615-2
pmc: PMC9210986
mid: NIHMS1804446
doi:

Substances chimiques

Elastomers 0
Neurotransmitter Agents 0
Serotonin 333DO1RDJY
Graphite 7782-42-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

94-101

Subventions

Organisme : NIDA NIH HHS
ID : R01 DA045664
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL150566
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH116904
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).
pubmed: 29853555 pmcid: 6287765 doi: 10.1126/science.aat4422
Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).
pubmed: 30190311 pmcid: 6663484 doi: 10.1126/science.aao6750
Kishida, K. T. et al. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc. Natl Acad. Sci. 113, 200–205 (2016).
pubmed: 26598677 doi: 10.1073/pnas.1513619112
Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).
pubmed: 15152198 doi: 10.1038/nrn1406
Naughton, M., Mulrooney, J. B. & Leonard, B. E. A review of the role of serotonin receptors in psychiatric disorders. Hum. Psychopharmacol. 15, 397–415 (2000).
pubmed: 12404302 doi: 10.1002/1099-1077(200008)15:6<397::AID-HUP212>3.0.CO;2-L
Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703 (2001).
pubmed: 11584307 doi: 10.1038/35094560
Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).
pubmed: 23942470 doi: 10.1038/nrn3381
Cummings, J. L. Depression and Parkinson’s disease: a review. Am. J. Psychiatry 149, 443–454 (1992).
pubmed: 1372794 doi: 10.1176/ajp.149.4.443
Spohn, S. N. & Mawe, G. M. Non-conventional features of peripheral serotonin signalling-the gut and beyond. Nat. Rev. Gastroenterol. Hepatol. 14, 412–420 (2017).
pubmed: 28487547 pmcid: 5672796 doi: 10.1038/nrgastro.2017.51
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).
pubmed: 22392290 doi: 10.1038/nrgastro.2012.32
Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).
pubmed: 23314171 pmcid: 4469972 doi: 10.1038/nmeth.2333
Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).
pubmed: 30007419 pmcid: 6092020 doi: 10.1016/j.cell.2018.06.042
Robinson, D. L., Venton, B. J., Heien, M. L. A. V. & Wightman, R. M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49, 1763–1773 (2003).
pubmed: 14500617 doi: 10.1373/49.10.1763
Hashemi, P., Dankoski, E. C., Petrovic, J., Keithley, R. B. & Wightman, R. M. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81, 9462–9471 (2009).
pubmed: 19827792 pmcid: 2783829 doi: 10.1021/ac9018846
Schwerdt, H. N. et al. Long-term dopamine neurochemical monitoring in primates. Proc. Natl Acad. Sci. 114, 13260–13265 (2017).
pubmed: 29158415 pmcid: 5740663 doi: 10.1073/pnas.1713756114
Taylor, I. M. et al. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens. Bioelectron. 89, 400–410 (2017).
pubmed: 27268013 doi: 10.1016/j.bios.2016.05.084
Clark, J. J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7, 126–129 (2010).
pubmed: 20037591 doi: 10.1038/nmeth.1412
Moran, R. J. et al. The protective action encoding of serotonin transients in the human brain. Neuropsychopharmacology 43, 1425–1435 (2018).
pubmed: 29297512 pmcid: 5916372 doi: 10.1038/npp.2017.304
Bang, D. et al. Sub-second dopamine and serotonin signaling in human striatum during perceptual decision-making. Neuron 108, 999–1010.e6 (2020).
pubmed: 33049201 pmcid: 7736619 doi: 10.1016/j.neuron.2020.09.015
Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).
pubmed: 25574019 doi: 10.1126/science.1260318
Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).
pubmed: 33199897 doi: 10.1038/s41593-020-00739-8
Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).
pubmed: 30833706 pmcid: 6531316 doi: 10.1038/s41583-019-0140-6
Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).
pubmed: 32989277 doi: 10.1038/s41563-020-00814-2
Frank, J. A., Antonini, M. J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).
pubmed: 31406326 pmcid: 7243676 doi: 10.1038/s41587-019-0198-8
Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14, 156–160 (2019).
pubmed: 30598525 doi: 10.1038/s41565-018-0331-8
Terem, I. et al. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80, 2549–2559 (2018).
pubmed: 29845645 pmcid: 6269230 doi: 10.1002/mrm.27236
Spencer, K. C. et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7, 1952 (2017).
pubmed: 28512291 pmcid: 5434064 doi: 10.1038/s41598-017-02107-2
Schwerdt, H. N. et al. Subcellular probes for neurochemical recording from multiple brain sites. Lab Chip 17, 1104–1115 (2017).
pubmed: 28233001 pmcid: 5572650 doi: 10.1039/C6LC01398H
Mazzuoli-Weber, G. & Schemann, M. Mechanosensitivity in the enteric nervous system. Front. Cell. Neurosci. 9, 408 (2015).
pubmed: 26528136 pmcid: 4602087 doi: 10.3389/fncel.2015.00408
Patel, B. A., Bian, X., Quaiserová-Mocko, V., Galligan, J. J. & Swain, G. M. In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41–47 (2007).
pubmed: 17180178 doi: 10.1039/B611920D
Osorio, N. & Delmas, P. Patch clamp recording from enteric neurons in situ. Nat. Protoc. 6, 15–27 (2011).
pubmed: 21212776 doi: 10.1038/nprot.2010.172
Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 8, 239–261 (2015).
doi: 10.1146/annurev-anchem-071114-040426
Xu, C., Wu, F., Yu, P. & Mao, L. In vivo electrochemical sensors for neurochemicals: recent update. ACS Sens. 4, 3102–3118 (2019).
pubmed: 31718157 doi: 10.1021/acssensors.9b01713
Kinloch, I. A., Suhr, J., Lou, J., Young, R. J. & Ajayan, P. M. Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018).
pubmed: 30385571 doi: 10.1126/science.aat7439
Sun, D. et al. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sens. Actuators B Chem. 259, 433–442 (2018).
doi: 10.1016/j.snb.2017.12.037
Yang, W. et al. Enhancing electrochemical detection of dopamine via dumbbell-like FePt–Fe
pubmed: 28045168 doi: 10.1039/C6NR08507E
Fernandes, D. M. et al. Novel electrochemical sensor based on N-doped carbon nanotubes and Fe
pubmed: 25086716 doi: 10.1016/j.jcis.2014.06.050
Salinas-Hernández, X. I. et al. Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. eLife 7, e38818 (2018).
pubmed: 30421719 pmcid: 6257816 doi: 10.7554/eLife.38818
Bertrand, P. P., Hu, X., Mach, J. & Bertrand, R. L. Serotonin (5-HT) release and uptake measured by real-time electrochemical techniques in the rat ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1228–G1236 (2008).
pubmed: 18927211 doi: 10.1152/ajpgi.90375.2008
Bertrand, P. P. Real-time measurement of serotonin release and motility in guinea pig ileum. J. Physiol. 577, 689–704 (2006).
pubmed: 16959854 pmcid: 1890433 doi: 10.1113/jphysiol.2006.117804
Bertrand, P. P. & Bertrand, R. L. Serotonin release and uptake in the gastrointestinal tract. Auton. Neurosci. 153, 47–57 (2010).
pubmed: 19729349 doi: 10.1016/j.autneu.2009.08.002
Bertrand, P. P. Real-time detection of serotonin release from enterochromaffin cells of the guinea-pig ileum. Neurogastroenterol. Motil. 16, 511–514 (2004).
pubmed: 15500507 doi: 10.1111/j.1365-2982.2004.00572.x
Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).
pubmed: 23797870 pmcid: 4048923 doi: 10.1038/nrgastro.2013.105
Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).
pubmed: 17241888 doi: 10.1053/j.gastro.2006.11.002
Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702 (1990).
pubmed: 1688816 doi: 10.1016/0016-5085(90)90290-H
Linden, D. R., Chen, J. X., Gershon, M. D., Sharkey, K. A. & Mawe, G. M. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, 761–768 (2003).
doi: 10.1152/ajpgi.00488.2002
Padmanabhan, P., Grosse, J., Asad, A. B. M. A., Radda, G. K. & Golay, X. Gastrointestinal transit measurements in mice with
pubmed: 23915679 pmcid: 3737085 doi: 10.1186/2191-219X-3-60
Singh, M. K. & Bandyopadhyay, D. Design and synthesis of nanoporous perylene bis-imide linked metalloporphyrin frameworks and their catalytic activity. J. Chem. Sci. 128, 1–8 (2016).
doi: 10.1007/s12039-015-0994-8
Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).
pubmed: 25493446 doi: 10.1038/ncomms6714
Metscher, B. D. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology 9, 11 (2009).
pubmed: 19545439 pmcid: 2717911 doi: 10.1186/1472-6793-9-11
Roberts, J. G. & Sombers, L. A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal. Chem. 90, 490–504 (2018).
pubmed: 29182309 doi: 10.1021/acs.analchem.7b04732
Howard, C. D., Li, H., Geddes, C. E. & Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron 93, 1436–1450.e8 (2017).
pubmed: 28285820 pmcid: 5393307 doi: 10.1016/j.neuron.2017.02.029
Stamford, J. A., Kruk, Z. L. & Millar, J. Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data. Brain Res. 515, 173–180 (1990).
pubmed: 2357555 doi: 10.1016/0006-8993(90)90593-Z
Swamy, B. E. K. & Venton, B. J. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132, 876–884 (2007).
pubmed: 17710262 doi: 10.1039/b705552h
Jackson, B. P. & Mark Wightman, R. Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res. 674, 163–166 (1995).
pubmed: 7773688 doi: 10.1016/0006-8993(95)00019-M
Tatem, K. S. et al. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J. Vis. Exp. 29, 51785 (2014).
Lynch, J. J., Castagné, V., Moser, P. C. & Mittelstadt, S. W. Comparison of methods for the assessment of locomotor activity in rodent safety pharmacology studies. J. Pharmacol. Toxicol. Methods 64, 74–80 (2011).
pubmed: 21406241 doi: 10.1016/j.vascn.2011.03.003
Hoibian, E., Florens, N., Koppe, L., Vidal, H. & Soulage, C. O. Distal colon motor dysfunction in mice with chronic kidney disease: putative role of uremic toxins. Toxins 10, 204 (2018).
pmcid: 5983260 doi: 10.3390/toxins10050204
Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).
pubmed: 28569761 doi: 10.1038/nprot.2017.044
Tainaka, K. et al. Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep. 24, 2196–2210.e9 (2018).
pubmed: 30134179 doi: 10.1016/j.celrep.2018.07.056
Swaminathan, M. et al. Video imaging and spatiotemporal maps to analyze gastrointestinal motility in mice. J. Vis. Exp. 2016, e53828 (2016).
Spear, E. T. et al. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neurogastroenterol. Motil. 30, e13349 (2018).
pubmed: 29644797 pmcid: 6153444 doi: 10.1111/nmo.13349

Auteurs

Jinxing Li (J)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Yuxin Liu (Y)

Department of Bioengineering, Stanford University, Stanford, CA, USA.

Lei Yuan (L)

Department of Biology, Stanford University, Stanford, CA, USA.

Baibing Zhang (B)

Department of Biology, Stanford University, Stanford, CA, USA.

Estelle Spear Bishop (ES)

Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.

Kecheng Wang (K)

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Jing Tang (J)

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Yu-Qing Zheng (YQ)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Wenhui Xu (W)

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Simiao Niu (S)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Levent Beker (L)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Thomas L Li (TL)

Department of Chemistry, Stanford University, Stanford, CA, USA.
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.

Gan Chen (G)

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Modupeola Diyaolu (M)

Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA.

Anne-Laure Thomas (AL)

Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA.

Vittorio Mottini (V)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Jeffrey B-H Tok (JB)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

James C Y Dunn (JCY)

Department of Bioengineering, Stanford University, Stanford, CA, USA.
Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA.

Bianxiao Cui (B)

Department of Chemistry, Stanford University, Stanford, CA, USA.

Sergiu P Pașca (SP)

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute and Bio-X, Stanford University, Stanford, CA, USA.

Yi Cui (Y)

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Aida Habtezion (A)

Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.

Xiaoke Chen (X)

Department of Biology, Stanford University, Stanford, CA, USA. xkchen@stanford.edu.

Zhenan Bao (Z)

Department of Chemical Engineering, Stanford University, Stanford, CA, USA. zbao@stanford.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH