A comparison of soil Staphylococcus aureus and fecal indicator bacteria concentrations across land uses in a Hawaiian watershed.


Journal

Journal of environmental quality
ISSN: 1537-2537
Titre abrégé: J Environ Qual
Pays: United States
ID NLM: 0330666

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 28 01 2022
accepted: 24 05 2022
pubmed: 3 6 2022
medline: 5 10 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and fecal indicator bacteria (FIB; Enterococcus spp., Clostridium perfringens) concentrations increase in Hawaiian streams and estuaries following storms and pose a health threat to recreational water users. To reduce this risk, watershed bacteria sources need to be identified for management actions. This study's goals were to identify soil bacteria sources among different land uses and to determine if their concentrations were associated with different soil properties. Soil samples were collected three times on 24 d between October 2017 and November 2018 at urban, agriculture, and native-forest land uses in the Hilo Bay watershed, Hawai'i Island, Hawai'i. Soil bacteria concentrations were quantified using culturing techniques with selective media. Staphylococcus aureus, MRSA, and FIB were present in soil from all land uses. Bacteria concentrations were highest in urban soils and lowest in native-forest soils, with up to three orders of magnitude differences among land uses. Staphylococcus aureus, MRSA, and FIB soil concentrations were positively correlated with each other and with soil temperature and pH, but inversely correlated with soil moisture and organic matter content. Our results demonstrate that soils are a watershed bacteria source and that some soil properties affect their concentrations. Identifying these sources is critical for implementing management actions to reduce pathogen loads to estuaries and transmission to recreational water users.

Identifiants

pubmed: 35653014
doi: 10.1002/jeq2.20380
doi:

Substances chimiques

Soil 0
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

916-929

Subventions

Organisme : U.S. Geological Survey
ID : G12AC00003
Organisme : National Science Foundation
ID : 0424566
Organisme : National Science Foundation
ID : 1005186
Organisme : National Science Foundation
ID : 1461301
Organisme : National Science Foundation
ID : 1826864
Organisme : National Institute of Health
ID : R25GM11347
Organisme : Kamehameha Schools
Organisme : Hau oli Mau Loa Foundation

Informations de copyright

© 2022 The Authors. Journal of Environmental Quality © 2022 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Références

Agga, G. E., Cook, K. L., Netthisinghe, A. M. P., Gilfillen, R. A., Woosley, P. B., & Sistani, K. R. (2019). Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. PLOS ONE, 14(2), e0212510. https://doi.org/10.1371/journal.pone.0212510
Al Yousef, S. A. (2012). Isolation of MRSA from soils sampled adjacent to hospitals in Saudi Arabia and Sheffield UK. Biosciences Biotechnology Research Asia, 9(2), 701-705. https://doi.org/10.13005/bbra/1054
Angen, Ø., Nielsen, M. W., Løfstrøm, P., Larsen, A. R., & Hendriksen, N. B. (2021). Airborne spread of methicillin resistant Staphylococcus aureus from a swine farm. Frontiers in Veterinary Science, 8, 644729. https://doi.org/10.3389/fvets.2021.644729
Bisson, J. W., & Cabelli, V. J. (1979). Membrane filter enumeration method for Clostridium perfringens. Applied Environmental Microbiology, 37(1), 55-66.
Boehm, A. B., Ashbolt, N. J., Colford, J. M., Dunbar, L. E., Fleming, L. E., Gold, M. A., Hansel, J. A., Hunter, P. R., Ichida, A. M., McGee, C. D., Soller, J. A., & Weisberg, S. B. (2009). A sea change ahead for recreational water quality criteria. Journal of Water and Health, 7(1), 9-20. https://doi.org/10.2166/wh.2009.122
Boithias, L., Ribolzi, O., Lacombe, G., Thammahacksa, C., Silvera, N., Latsachack, K., Soulileuth, B., Viguier, M., Auda, Y., Robert, E., Evrard, O., Huon, S., Pommier, T., Zouiten, C., Sengtaheuanghoung, O., & Rochelle-Newall, E. (2021). Quantifying the effect of overland flow on Escherichia coli pulses during floods: Use of a tracer-based approach in an erosion-prone tropical catchment. Journal of Hydrology, 594, 125935. https://doi.org/10.1016/j.jhydrol.2020.125935
Brinkmeyer, R., Amon, R. M. W., Schwarz, J. R., Saxton, T., Roberts, D., Harrison, S., Ellis, N., Fox, J., DiGuardi, K., Hochman, M., Duan, S., Stein, R., & Elliott, C. (2015). Distribution and persistence of Escherichia coli and Enterococci in stream bed and bank sediments from two urban streams in Houston, TX. Science of the Total Environment, 502, 650-658. https://doi.org/10.1016/j.scitotenv.2014.09.071
Brown, J. S., Stein, E. D., Ackerman, D., Dorsey, J. H., Lyon, J., & Carter, P. M. (2013). Metals and bacteria partitioning to various size particles in Ballona creek storm water runoff. Environmental Toxicology and Chemistry, 32(2), 320-328. https://doi.org/10.1002/etc.2065
Byamukama, D., Mach, R. L., Kansiime, F., Manafi, M., & Farnleitner, A. H. (2005). Discrimination efficacy of fecal pollution detection in different aquatic habitats of a high-altitude tropical country, using presumptive coliforms, Escherichia coli, and Clostridium perfringens spores. Applied and Environmental Microbiology, 71(1), 65-71. https://doi.org/10.1128/AEM.71.1.65-71.2005
Byappanahalli, M., & Fujioka, R. (2004). Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Science and Technology, 50(1), 27-32. https://doi.org/10.2166/wst.2004.0009
Byappanahalli, M. N., & Fujioka, R. S. (1998). Evidence that tropical soil environment can support the growth of Escherichia Coli. Water Science Technology, 38(12), 171-174.
Byappanahalli, M. N., Roll, B. M., & Fujioka, R. S. (2012). Evidence for occurrence, persistence, and growth potential of Escherichia coli and enterococci in Hawai‘i's soil environments. Microbes and Environments, 27(2), 164-170. https://doi.org/10.1264/jsme2.ME11305
Charoenca, N., & Fujioka, R. S. (1993). Assessment of Staphylococcus bacteria in Hawai‘i's marine recreational waters. Water Science Technology, 27(3-4), 283-289. https://doi.org/10.2166/wst.1993.0361
Chen, C., & Wu, F. (2021). Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) colonisation and infection among livestock workers and veterinarians: A systematic review and meta-analysis. Occupational and Environmental Medicine, 78(7), 530-540. https://doi.org/10.1136/oemed-2020-106418
County of Hawaiʻi General Plan. (2005). https://www.planning.hawaiicounty.gov/general-plan-community-planning/gp/plan
Deenik, J., & McClellan, A. T. (2007). Soils of Hawaiʻi. Soil and Crop Management, 12.
Desmarais, T. R., Solo-Gabriele, H. M., & Palmer, C. J. (2002). Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Applied and Environmental Microbiology, 68(3), 1165-1172. https://doi.org/10.1128/AEM.68.3.1165-1172.2002
Devane, M. L., Moriarty, E., Weaver, L., Cookson, A., & Gilpin, B. (2020). Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. Water Research, 185, 116204. https://doi.org/10.1016/j.watres.2020.116204
Division of Aquatic Resources. (2020). Watersheds. Department of Land and Natural Resources, State of Hawai‘i. https://geoportal.hawaii.gov/datasets/HiStateGIS::watersheds-dar-version/about
Doran, J. W., & Linn, D. M. (1979). Bacteriological quality of runoff water from pastureland. Applied and Environmental Microbiology, 37(5), 985-991.
Dunkell, D. O., Bruland, G. L., Evensen, C. I., & Walker, M. J. (2011). Effects of feral pig (Sus scrofa) exclusion on enterococci in runoff from the forested headwaters of a Hawaiian watershed. Water, Air, & Soil Pollution, 221(1-4), 313-326. https://doi.org/10.1007/s11270-011-0792-y
Dweba, C. C., Zishiri, O. T., & Zowalaty, M. E. L. (2019). Isolation and molecular identification of virulence, antimicrobial and heavy metal resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. Pathogens, 8(2), 79. https://doi.org/10.3390/pathogens8020079
Economy, L. M., Wiegner, T. N., Strauch, A. M., Awaya, J. D., & Gerken, T. (2019). Rainfall and streamflow effects on estuarine Staphylococcus aureus and fecal indicator bacteria concentrations. Journal of Environment Quality, 48(6), 1711-1721. https://doi.org/10.2134/jeq2019.05.0196
Environmental Systems Research Institute (ESRI). (2016). ArcGIS Desktop (10.4.1). https://www.esri.com
Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecology, 45(1), 63-71. https://doi.org/10.1007/s00248-002-1007-2
Friese, A., Schulz, J., Zimmermann, K., Tenhagen, B.-A., Fetsch, A., Hartung, J., & Rösler, U. (2013). Occurrence of livestock-associated methicillin-resistant Staphylococcus aureus in turkey and broiler barns and contamination of air and soil durfaces in their vicinity. Applied and Environmental Microbiology, 79(8), 2759-2766. https://doi.org/10.1128/AEM.03939-12
Fujioka, R. S., & Byappanahalli, M. N. (2001). Microbial ecology controls the establishment of fecal bacteria in tropical soil environment. Advances in Water and Wastewater Treatment Technology, 273-283. https://doi.org/10.1016/B978-044450563-7/50211-0
Fujioka, R., Sian-Denton, C., Borja, M., Castro, J., & Morphew, K. (1999). Soil: The environmental source of Escherichia coli and enterococci in Guam's streams. Journal of Applied Microbiology, 85(S1), 83S-89S. https://doi.org/10.1111/j.1365-2672.1998.tb05286.x
Gerken, T. J., Roberts, M. C., Dykema, P., Melly, G., Lucas, D., De Los Santos, V., Gonzalez, J., Butaye, P., & Wiegner, T. N. (2021). Environmental surveillance and characterization of antibiotic resistant Staphylococcus aureus at coastal beaches and rivers on the Island of Hawaiʻi. Antibiotics, 10(8), 980. https://doi.org/10.3390/antibiotics10080980
Giambelluca, T. W., Chen, Q., Frazier, A. G., Price, J. P., Chen, Y.-L., Chu, P.-S., Eischeid, J. K., & Delparte, D. M. (2013). Online rainfall atlas of Hawai‘i. Bulletin of the American Meteorological Society, 94(3), 313-316. https://doi.org/10.1175/BAMS-D-11-00228.1
Glushakova, A. M., Lysak, L. V., Belov, A. A., Ivanova, A. E., Lapygina, E. V., Prokofieva, T. V., & Umarova, A. B. (2021). Local monitoring of saprotrophic bacterial complexes of urban soils in Syktyvkar in 2019 and 2020. Moscow University Soil Science Bulletin, 76(2), 84-88. https://doi.org/10.3103/S0147687421020010
Glushakova, A. M., Lysak, L. V., Umarova, A. B., Prokof'eva, T. V., Podushin, Y. V., Bykova, G. S., & Malukova, L. P. (2021). Bacterial complexes of urbanozems in southern cities of Russia. Eurasian Soil Science, 54(2), 257-263. https://doi.org/10.1134/S1064229321020058
Goldstein, R. E. R., Micallef, S. A., Gibbs, S. G., Davis, J. A., He, X., George, A., Kleinfelter, L. M., Schreiber, N. A., Mukherjee, S., Sapkota, A., Joseph, S. W., & Sapkota, A. R. (2012). Methicillin-resistant Staphylococcus aureus (MRSA) detected at four U.S. wastewater treatment plants. Environmental Health Perspectives, 120(11), 1551-1558. https://doi.org/10.1289/ehp.1205436
Goodwin, K. D., McNay, M., Cao, Y., Ebentier, D., Madison, M., & Griffith, J. F. (2012). A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater and beach sand. Water Research, 46(13), 4195-4207. https://doi.org/10.1016/j.watres.2012.04.001
Goodwin, K. D., & Pobuda, M. (2009). Performance of CHROMagar™ Staph aureus and CHROMagar™ MRSA for detection of Staphylococcus aureus in seawater and beach sand: Comparison of culture, agglutination, and molecular analyses. Water Research, 43(19), 4802--4811. https://doi.org/10.1016/j.watres.2009.06.025
Goto, D. K., & Yan, T. (2011). Effects of land uses on fecal indicator bacteria in the water and soil of a tropical watershed. Microbes and Environments, 26(3), 254-260. https://doi.org/10.1264/jsme2.ME11115
Hardina, C. M., & Fujioka, R. S. (1991). Soil: The environmental source of Escherichia coli and enterococci in Hawai‘i's streams. Environmental Toxicology and Water Quality, 6(1), 185-195.
Hawai‘i Statewide GIS Program. (2019). LUPAG (Land Use Pattern Allocation Guide) map. State of Hawai‘i, Office of Planning and Sustainable Development. https://geoportal.hawaii.gov/datasets/HiStateGIS::hawaii-county-lupag/about
Ishii, S., Ksoll, W. B., Hicks, R. E., & Sadowsky, M. J. (2006). Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Applied and Environmental Microbiology, 72(1), 612-621. https://doi.org/10.1128/AEM.72.1.612-621.2006
Kinzelman, J. L., & McLellan, S. L. (2009). Success of science-based best management practices in reducing swimming bans: A case study from Racine, Wisconsin, USA. Aquatic Ecosystem Health & Management, 12(2), 187-196. https://doi.org/10.1080/14634980902907466
Kirs, M., Caffaro-Filho, R. A., Wong, M., Harwood, V. J., Moravcik, P., & Fujioka, R. S. (2016). Human-associated Bacteroides spp. and human polyomaviruses as microbial source tracking markers in Hawai‘i. Applied and Environmental Microbiology, 82(22), 6757-6767. https://doi.org/10.1128/AEM.01959-16
Matches, J. R., Liston, J., & Curran, D. (1974). Clostridium perfringens in the environment. Applied Microbiology, 28(4), 655-660. https://doi.org/10.1128/am.28.4.655-660.1974
Mushi, D. (2018). Clostridium perfringens identifies source of pollution and reference streams in a tropical highland environment. Journal of Water and Health, 16(4), 501-507. https://doi.org/10.2166/wh.2018.192
Myers, D. N., Stoeckel, D. M., Bushon, R. N., Francy, D. S., & Brady, A. M. G. (2014). Fecal indicator bacteria. In Techniques of water-resources investigations (p. 73). USGS. https://pubs.er.usgs.gov/publication/twri09A7.1
Ochsner, T. E. (2008). Measuring soil temperature. In S. Logsdon, D. Clay, D. Moore, & T. Tsegaye (Eds.), Soil science: Step-by-step field analysis (pp. 235-251). SSSA. https://doi.org/10.2136/2008.soilsciencestepbystep.c18
Oshiro, R., & Fujioka, R. (1995). Sand, soil, and pigeon droppings: Sources of indicator bacteria in the waters of Hanauma bay, Oahu, Hawai‘i. Water Science Technology, 31(5-6), 251-254. https://doi.org/10.1016/0273-1223(95)00275-R
Parham, J., Higashi, G., Lapp, E., Kuamoʻo, D., Nishimoto, R., Hau, S., Fitzsimons, M., Polhemus, D., & Devick, W. (2008). Atlas of Hawaiian watersheds & their aquatic resources. Division of Aquatic Resources, Department of Land and Natural Resources, State of Hawai‘i, and the Bishop Museum.
Paule-Mercado, M. A., Ventura, J. S., Memon, S. A., Jahng, D., Kang, J.-H., & Lee, C.-H. (2016). Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff. Science of the Total Environment, 550, 1171-1181. https://doi.org/10.1016/j.scitotenv.2016.01.026
Pavlov, P. M. (1988). Health risks to humans and domestic livestock posed by feral pigs (Sus scrofa) in North Queensland. Proceedings of the Vertebrate Pest Conference, 13(13), 141-144.
Plano, L. R., Garza, A. C., Shibata, T., Elmir, S. M., Kish, J., Sinigalliano, C. D., Gidley, M. L., Miller, G., Withum, K., Fleming, L. E., & Solo-Gabriele, H. M. (2011). Shedding of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from adult and pediatric bathers in marine waters. BMC Microbiology, 11(1), 5. https://doi.org/10.1186/1471-2180-11-5
Poppe, L. J., Eliason, A. H., Fredericks, J. J., Rendigs, R. R., Blackwood, D., & Pollini, C. F. (2000). Grain-size analysis of marine sediments: Methodology and data processing. In USGS East-Coast sediment analysis: Procedures, data-base, and georeferenced displays. USGS.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Ragosta, G., Evensen, C., Atwill, E. R., Walker, M., Ticktin, T., Asquith, A., & Tate, K. W. (2010). Causal connections between water quality and land use in a rural tropical island watershed. EcoHealth, 7(1), 105-113. https://doi.org/10.1007/s10393-010-0299-9
Rochelle-Newall, E. J., Ribolzi, O., Viguier, M., Thammahacksa, C., Silvera, N., Latsachack, K., Dinh, R. P., Naporn, P., Sy, H. T., Soulileuth, B., Hmaimum, N., Sisouvanh, P., Robain, H., Janeau, J.-L., Valentin, C., Boithias, L., & Pierret, A. (2016). Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments. Scientific Reports, 6(1), 32974. https://doi.org/10.1038/srep32974
Rochelle-Newall, E., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O., & Ribolzi, O. (2015). A short review of fecal indicator bacteria in tropical aquatic ecosystems: Knowledge gaps and future directions. Frontiers in Microbiology, 6, https://doi.org/10.3389/fmicb.2015.00308
Roll, B. M., & Fujioka, R. S. (1997). Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality. Water Science and Technology, 35(11-12), 179-186. https://doi.org/10.2166/wst.1997.0730
Schulz, J., Friese, A., Klees, S., Tenhagen, B. A., Fetsch, A., Rösler, U., & Hartung, J. (2012). Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78(16), 5666-5671. https://doi.org/10.1128/AEM.00550-12
Selvakumar, A., & Borst, M. (2006). Variation of microorganism concentrations in urban stormwater runoff with land use and seasons. Journal of Water and Health, 4(1), 109-124. https://doi.org/10.2166/wh.2006.0009
Shuval, H. (2003). Estimating the global burden of thalassogenic diseases: Human infectious diseases caused by wastewater pollution of the marine environment. Journal of Water and Health, 1(2), 53-64.
Skalbeck, J. D., Kinzelman, J. L., & Mayer, G. C. (2010). Fecal indicator organism density in beach sands: Impact of sediment grain size, uniformity, and hydrologic factors on surface water loading. Journal of Great Lakes Research, 36(4), 707-714. https://doi.org/10.1016/j.jglr.2010.08.004
Solo-Gabriele, H. M., Wolfert, M. A., Desmarais, T. R., & Palmer, C. J. (2000). Sources of Escherichia coli in a coastal subtropical environment. Applied and Environmental Microbiology, 66(1), 230-237. https://doi.org/10.1128/AEM.66.1.230-237.2000
Sonola, V. S., Misinzo, G., & Matee, M. I. (2021). Occurrence of multidrug-resistant Staphylococcus aureus among humans, rodents, chickens, and household soils in Karatu, Northern Tanzania. International Journal of Environmental Research and Public Health, 18(16), 8496. https://doi.org/10.3390/ijerph18168496
Sorensen, D. L., Eberl, S. G., & Dicksa, R. A. (1989). Clostridium perfringens as a point source indicator in non-point polluted streams. Water Research, 23(2), 191-197. https://doi.org/10.1016/0043-1354(89)90043-2
Soupir, M. L., Mostaghimi, S., & Dillaha, T. (2010). Attachment of Escherichia coli and enterococci to particles in runoff. Journal of Environmental Quality, 39(3), 1019-1027. https://doi.org/10.2134/jeq2009.0296
Spatial Data Analysis and Visualization Lab. (2015). 2015 Hawai‘i statewide agricultural land use baseline. University of Hawai‘i at Hilo. https://geoportal.hawaii.gov/datasets/HiStateGIS::agricultural-land-use-2015-baseline/about
Staley, Z. R., Chase, E., Mitraki, C., Crisman, T. L., & Harwood, V. J. (2013). Microbial water quality in freshwater lakes with different land use. Journal of Applied Microbiology, 115(5), 1240-1250. https://doi.org/10.1111/jam.12312
Strauch, A. M., Bruland, G. L., MacKenzie, R. A., & Giardina, C. P. (2016). Soil and hydrological responses to wild pig (Sus scofa) exclusion from native and strawberry guava (Psidium cattleianum)-invaded tropical montane wet forests. Geoderma, 279, 53-60. https://doi.org/10.1016/j.geoderma.2016.05.021
Strauch, A. M., Mackenzie, R. A., Bruland, G. L., Tingley, R., & Giardina, C. P. (2014). Climate change and land use drivers of fecal bacteria in tropical Hawaiian rivers. Journal of Environmental Quality, 43(4), 1475-1483. https://doi.org/10.2134/jeq2014.01.0025
Tate, R. L. (2000). Soil microbiology (2nd ed.). John Wiley.
Trusdell, F. A., Wolfe, E. W., & Morris, J. (2006). Digital database of the geologic map of the Island of Hawai'i (Report No. 144; Supplement to I-2524A, Data Series). USGS. https://doi.org/10.3133/ds144
Tyrrel, S. F., & Quinton, J. N. (2003). Overland flow transport of pathogens from agricultural land receiving faecal wastes. Journal of Applied Microbiology, 94, 87S-93S. https://doi.org/10.1046/j.1365-2672.94.s1.10.x
USEPA. (2004). Method 9045D Soil and Waste pH (SW-846 Ch 6). https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf
Viau, E. J., Goodwin, K. D., Yamahara, K. M., Layton, B. A., Sassoubre, L. M., Burns, S. L., Tong, H.-I., Wong, S. H. C., Lu, Y., & Boehm, A. B. (2011). Bacterial pathogens in Hawaiian coastal streams: Associations with fecal indicators, land cover, and water quality. Water Research, 45(11), 3279-3290. https://doi.org/10.1016/j.watres.2011.03.033
Vithanage, G., Fujioka, R. S., & Ueunten, G. (2011). Innovative strategy using alternative fecal indicators (F+RNA/somatic coliphages, Clostridium perfringens) to detect cesspool discharge pollution in streams and receiving coastal waters within a tropical environment. Marine Technology Society Journal, 45(2), 101-111. https://doi.org/10.4031/MTSJ.45.2.12
Voidarou, C., Bezirtzoglou, E., Alexopoulos, A., Plessas, S., Stefanis, C., Papadopoulos, I., Vavias, S., Stavropoulou, E., Fotou, K., Tzora, A., & Skoufos, I. (2011). Occurrence of Clostridium perfringens from different cultivated soils. Anaerobe, 17(6), 320-324. https://doi.org/10.1016/j.anaerobe.2011.05.004
Walters, S. P., Thebo, A. L., & Boehm, A. B. (2011). Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California. Water Research, 45(4), 1752-1762. https://doi.org/10.1016/j.watres.2010.11.032
Wehr, N. H., Kinney, K. M., Nguyen, N. H., Giardina, C. P., & Litton, C. M. (2019). Changes in soil bacterial community diversity following the removal of invasive feral pigs from a Hawaiian tropical montane wet forest. Scientific Reports, 9(1), 14681. https://doi.org/10.1038/s41598-019-48922-7
Wiegner, T. N., Edens, C. J., Abaya, L. M., Carlson, K. M., Lyon-Colbert, A., & Molloy, S. L. (2017). Spatial and temporal microbial pollution patterns in a tropical estuary during high and low river flow conditions. Marine Pollution Bulletin, 114(2), 952-961. https://doi.org/10.1016/j.marpolbul.2016.11.015
Wilcock, R. J., Betteridge, K., Shearman, D., Fowles, C. R., Scarsbrook, M. R., Thorrold, B. S., & Costall, D. (2009). Riparian protection and on-farm best management practices for restoration of a lowland stream in an intensive dairy farming catchment: A case study. New Zealand Journal of Marine and Freshwater Research, 43(3), 803-818. https://doi.org/10.1080/00288330909510042
Yamahara, K. M., Keymer, D. P., Layton, B. A., Walters, S. P., Thompson, R. S., Rosener, M., & Boehm, A. B. (2020). Application of molecular source tracking and mass balance approach to identify potential sources of fecal indicator bacteria in a tropical river. PLOS ONE, 15(4), e0232054. https://doi.org/10.1371/journal.pone.0232054

Auteurs

Tyler Gerken (T)

Geography and Environmental Science Dep., Univ. of Hawai'i at Hilo, 200 W. Kāwili St., Hilo, HI, 96720, USA.
Dep. of Environmental and Occupational Health Sciences, School of Public Health, Univ. of Washington, 3980 15th Ave. NE, Seattle, WA, 98195, USA.

Tracy N Wiegner (TN)

Marine Science Dep., Univ. of Hawai'i at Hilo, 200 W. Kāwili St., Hilo, HI, 96720, USA.

Louise M Economy (LM)

Tropical Conservation Biology and Environmental Science Graduate Program, Univ. of Hawai'i at Hilo, Hilo, HI, 96720, USA.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal

Classifications MeSH