Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in Pichia pastoris.
Journal
Microbial biotechnology
ISSN: 1751-7915
Titre abrégé: Microb Biotechnol
Pays: United States
ID NLM: 101316335
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
23
03
2022
received:
03
09
2021
accepted:
31
03
2022
pubmed:
4
6
2022
medline:
9
9
2022
entrez:
3
6
2022
Statut:
ppublish
Résumé
In our previous study, we serendipitously discovered that protein secretion in the methylotrophic yeast Pichia pastoris is enhanced by a mutation (V50A) in the mating factor alpha (MFα) prepro-leader signal derived from Saccharomyces cerevisiae. In the present study, we investigated 20 single-amino-acid substitutions, including V50A, located within the MFα signal peptide, indicating that V50A and several single mutations alone provided significant increase in production of the secreted proteins. In addition to hydrophobicity index analysis, both an unfolded protein response (UPR) biosensor analysis and a microscopic observation showed a clear difference on the levels of UPR induction and mis-sorting of secretory protein into vacuoles among the wild-type and mutated MFα signal peptides. This work demonstrates the importance of avoiding entry of secretory proteins into the intracellular protein degradation pathways, an observation that is expected to contribute to the engineering of strains with increased production of recombinant secreted proteins.
Identifiants
pubmed: 35656803
doi: 10.1111/1751-7915.14061
pmc: PMC9437885
doi:
Substances chimiques
Fungal Proteins
0
Protein Sorting Signals
0
Recombinant Proteins
0
Mating Factor
61194-02-3
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2364-2378Informations de copyright
© 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Biochemistry. 2009 Sep 8;48(35):8279-81
pubmed: 19658435
Cell Mol Life Sci. 2021 Apr;78(7):3691-3707
pubmed: 33687500
Microb Cell Fact. 2014 Aug 28;13(1):125
pubmed: 25164324
J Mol Biol. 1982 May 5;157(1):105-32
pubmed: 7108955
Appl Microbiol Biotechnol. 2012 Jan;93(1):31-9
pubmed: 22057543
Antioxid Redox Signal. 2014 Jul 20;21(3):414-37
pubmed: 24483278
Mol Biol Cell. 2012 Mar;23(5):955-64
pubmed: 22219379
Nat Cell Biol. 2004 Dec;6(12):1189-94
pubmed: 15516922
Appl Microbiol Biotechnol. 2014 Jun;98(12):5301-17
pubmed: 24743983
Biotechnol Lett. 2016 Dec;38(12):2137-2143
pubmed: 27613154
Biotechnol Bioeng. 2016 Nov;113(11):2358-66
pubmed: 27183011
Metab Eng. 2019 Sep;55:142-151
pubmed: 31220665
Microbiology (Reading). 2015 Jul;161(7):1356-68
pubmed: 25934645
Appl Microbiol Biotechnol. 2015 Apr;99(7):2925-38
pubmed: 25722021
Nucleic Acids Res. 2020 Dec 16;48(22):13000-13012
pubmed: 33257988
Gene. 2013 May 1;519(2):311-7
pubmed: 23454485
Blood. 2000 Mar 15;95(6):2098-103
pubmed: 10706880
Commun Biol. 2022 Jun 8;5(1):561
pubmed: 35676418
Biotechnol Bioeng. 2009 Aug 15;103(6):1192-201
pubmed: 19459139
Curr Opin Biotechnol. 2019 Oct;59:175-181
pubmed: 31470258
Biotechnol Appl Biochem. 2020 Jan;67(1):82-94
pubmed: 31523843
J Cell Biol. 1995 Mar;128(5):779-92
pubmed: 7533169
Microb Cell Fact. 2018 Oct 12;17(1):161
pubmed: 30314480
Biochim Biophys Acta. 1999 Mar 9;1410(3):287-98
pubmed: 10082794
Sci Rep. 2016 Oct 26;6:35932
pubmed: 27782154
Future Microbiol. 2013 Feb;8(2):191-208
pubmed: 23374125
ACS Synth Biol. 2016 Feb 19;5(2):172-86
pubmed: 26592304
Nat Methods. 2008 Aug;5(8):683-5
pubmed: 18622396
Appl Microbiol Biotechnol. 2010 Mar;86(2):403-17
pubmed: 20140428
FEMS Yeast Res. 2018 Nov 1;18(7):
pubmed: 30010892
Microb Biotechnol. 2022 Sep;15(9):2364-2378
pubmed: 35656803
Gene. 2017 Jan 20;598:50-62
pubmed: 27984193
Nucleic Acids Res. 2008 Jan;36(Database issue):D202-5
pubmed: 17998252