Metabolic engineering of Bacillus subtilis for high-level production of uridine from glucose.
Bacillus subtilis
ansB
ansR
AprE
uridine
ykgB gene
Journal
Letters in applied microbiology
ISSN: 1472-765X
Titre abrégé: Lett Appl Microbiol
Pays: England
ID NLM: 8510094
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
revised:
26
05
2022
received:
11
02
2022
accepted:
27
05
2022
pubmed:
4
6
2022
medline:
24
9
2022
entrez:
3
6
2022
Statut:
ppublish
Résumé
As an intermediate in drug synthesis, uridine has practical applications in the pharmaceutical field. Bacillus subtilis is used as a host to boost uridine yield by manipulating its uridine biosynthesis pathway. In this study, we engineered a high-uridine-producing strain of B. subtilis by modifying its metabolic pathways in vivo. Overexpression of the aspartate ammonia-lyase (ansB) gene increased the relative transcriptional level of ansB in B. subtilis TD320 by 13·18 times and improved uridine production to 15·13 g l
Substances chimiques
Bacterial Proteins
0
Powders
0
Urea
8W8T17847W
Transferases
EC 2.-
Subtilisins
EC 3.4.21.-
Urease
EC 3.5.1.5
Aspartate Ammonia-Lyase
EC 4.3.1.1
Glucose
IY9XDZ35W2
Uridine
WHI7HQ7H85
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
824-830Subventions
Organisme : National High-tech R&D Program of China
ID : 2012AA02A701
Informations de copyright
© 2022 The Society for Applied Microbiology.
Références
Asahi, S., Tsunemi, Y. and Doi, M. (1995) Improvement of a cytidine-producing mutant of Bacillus subtilis introducing a mutation by homologous recombination. Biosci. Biotech. Biochem 59, 2123-2126.
Barbieri, G., Albertini, A.M., Ferrari, E., Sonenshein, A.L. and Belitsky, B.R. (2016) Interplay of CodY and ScoC in the regulation of major extracellular protease genes of Bacillus subtilis. J Bacteriol 198, 907-920.
Cheng, Y., Liu, K., Huang, Y., Xu, Q. and Chen, N. (2009) Breeding of uridine strains and optimization of fermentation conditions. Ferment Technol Newsletter 38, 11-15.
Chumsakul, O., Takahashi, H., Oshima, T., Hishimoto, T., Kanaya, S., Ogasawara, N. and Ishikawa, S. (2011) Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Res 39, 414-428.
Fan, X., Wu, H., Li, G., Yuan, H., Zhang, H., Li, Y., Xie, X. and Chen, N. (2017) Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS One 12, e0176545.
Fan, X., Wu, H., Jia, Z., Li, G., Li, Q., Chen, N. and Xie, X. (2018) Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin. Appl Microbiol Biotechnol 102, 8753-8762.
Gallai, V., Mazzotta, G., Montesi, S., Sarchielli, P. and Del Gatto, F. (1992) Effects of uridine in the treatment of diabetic neuropathy: an electrophysiological study. Acta Neurol Scand 86, 1806-1809.
Hu, J., Lei, P., Mohsin, A., Liu, X., Huang, M., Li, L., Hu, J., Hang, H. et al. (2017) Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb Cell Fact 16, 150.
Jordheim, L.P., Durantel, D., Zoulim, F. and Dumontet, C. (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12, 447-464.
Klivenyi, P.G. and Calingasan, G. (2004) Neuroprotective effects of oral administration of triacetyl uridine against MPTP neurotoxicity. Neuromolecular Med 6, 87-92.
Kondo, D.G., Sung, Y.H., Hellem, T.L., Delmastro, K.K., Jeong, E.K., Kim, N., Shi, X. and Renshaw, P.F. (2011) Open-label uridine for treatment of depressed adolescents with bipolar disorder. J Child Adolesc Psychopharmacol 21, 171-175.
Liu, S., Endo, K., Ara, K., Ozaki, K. and Ogasawara, N. (2008) Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter. Microbiology (Reading) 154, 2562-2570.
McEvilly, M., Popelas, C. and Tremmel, B. (2011) Use of uridine triacetate for the management of fluorouracil overdose. Am J Health Syst Pharm 68, 1806-1809.
Patterson, P.H. and Chun, L.L. (1974) The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci U S A 71, 3607-3610.
Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45.
Sun, D.X. and Setlow, P. (1993) Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase. J Bacteriol 175, 2501-2506.
Shi, T., Wang, Y., Wang, Z., Wang, G., Liu, D., Fu, J., Chen, T. and Zhao, X. (2014) Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb Cell Fact 13, 16.
Wang, Y., Ma, R., Liu, L., He, L. and Ban, R. (2018) Improvement of uridine production in Bacillus subtilis by metabolic engineering. Biotechnol Lett 40, 151-155.
Xu, J., Wang, C. and Ban, R. (2022) Improving riboflavin production by modifying related metabolic pathways in Bacillus subtilis. Lett Appl Microbiol 74, 78-83.
Zhang, X., Wang, C., Liu, L. and Ban, R. (2020) Improve uridine production by modifying related metabolic pathways in Bacillus subtilis. Biotechnol Lett 42, 551-555.
Zhu, H., Yang, S., Yuan, Z. and Ban, R. (2015) Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis. Microb Cell Fact 14, 54.