Chiral proofreading during protein biosynthesis and its evolutionary implications.

Homochirality aminoacyl-tRNA synthetase chiral proofreading d-amino acids endosymbiosis mitochondria protein biosynthesis tRNA translation of genetic code translation quality control

Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
07 2022
Historique:
revised: 16 05 2022
received: 31 03 2022
accepted: 29 05 2022
pubmed: 7 6 2022
medline: 14 7 2022
entrez: 6 6 2022
Statut: ppublish

Résumé

Homochirality of biomacromolecules is a prerequisite for their proper functioning and hence essential for all life forms. This underscores the role of cellular chiral checkpoints in enforcing homochirality during protein biosynthesis. d-Aminoacyl-tRNA deacylase (DTD) is an enzyme that performs 'chirality-based proofreading' to remove d-amino acids mistakenly attached to tRNAs, thus recycling them for further rounds of translation. Paradoxically, owing to its l-chiral rejection mode of action, DTD can remove glycine as well, which is an achiral amino acid. However, this activity is modulated by discriminator base (N73) in tRNA, a unique element that protects the cognate Gly-tRNA

Identifiants

pubmed: 35662005
doi: 10.1002/1873-3468.14419
doi:

Substances chimiques

Amino Acids 0
RNA, Transfer, Amino Acyl 0
RNA, Transfer, Gly 0
RNA, Transfer 9014-25-9
Glycine TE7660XO1C

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1615-1627

Informations de copyright

© 2022 Federation of European Biochemical Societies.

Références

Pasteur L. Recherches sur la dissymétrie moléculaires des produits organiques naturels: Leçons professées à la Société chimique de Paris le 20 janvier et le 3 février 1860. C. Lahure; 1860.
Mason SF. Origins of biomolecular handedness. Nature. 1984;311:19-23.
Routh SB, Ahmad S, Sankaranarayanan R. D-amino acids: occurrence, stereochemistry and exclusion from translational machinery. In: Bansal M, Srinivasan N, editors. Biomolecular forms and functions. Hyderabad: World Scientific/Indian Inst of Science; 2012. 247-63.
Fujii N, Saito T. Homochirality and life. Chem Rec. 2004;4:267-78.
Wolosker H, Dumin E, Balan L, Foltyn VN. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J. 2008;275:3514-26.
Kuncha SK, Kruparani SP, Sankaranarayanan R. Chiral checkpoints during protein biosynthesis. J Biol Chem. 2019;294:16535-48.
Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006;443:50-5.
Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T, Fukai S, et al. Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science. 1998;280:578-82.
Silvian LF, Wang J, Steitz TA. Insights into editing from an Ile-tRNA synthetase structure with tRNAIle and mupirocin. Science. 1999;285:1074-7.
Dock-Bregeon AC, Rees B, Torres-Larios A, Bey G, Caillet J, Moras D. Achieving error-free translation: the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Mol Cell. 2004;16:375-86.
Soutourina O, Soutourina J, Blanquet S, Plateau P. Formation of D-tyrosyl-tRNATyr accounts for the toxicity of D-tyrosine toward Escherichia coli. J Biol Chem. 2004;279:42560-5.
Holman KM, Puppala AK, Lee JW, Lee H, Simonović M. Insights into substrate promiscuity of human seryl-tRNA synthetase. RNA. 2017;23:1685-99.
Silvian LF, Wang J, Steitz TA. Insights into editing from an Ile-tRNA synthetase structure with tRNA(Ile) and mupirocin. Science. 1999;285:1074-7.
Ling J, Yadavalli SS, Ibba M. Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine. RNA. 2007;13:1881-6.
Ibba M, Söll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000;69:617-50.
Palencia A, Crépin T, Vu MT, Lincecum TL, Martinis SA, Cusack S. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol. 2012;19:677-84.
Jones TE, Alexander RW, Pan T. Misacylation of specific nonmethionyl tRNAs by a bacterial methionyl-tRNA synthetase. Proc Natl Acad Sci USA. 2011;108:6933-8.
Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, et al. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell. 2000;103:793-803.
Chen M, Kato K, Kubo Y, Tanaka Y, Liu Y, Long F, et al. Structural basis for tRNA-dependent cysteine biosynthesis. Nat Commun. 2017;8:1521.
Zheng W-Q, Pedersen SV, Thompson K, Bellacchio E, French CE, Munro B, et al. Elucidating the molecular mechanisms associated with TARS2-related mitochondrial disease. Hum Mol Genet. 2022;31:523-34.
Pingoud A, Urbanke C. Aminoacyl transfer ribonucleic acid binding site of the bacterial elongation factor Tu. Biochemistry. 1980;19:2108-12.
Jonák J, Smrt J, Holý A, Rychlík I. Interaction of Escherichia coli EF-Tu · GTP and EF-Tu · GDP with analogues of the 3′ terminus of aminoacyl-tRNA. Eur J Biochem. 1980;105:315-20.
Bhuta A, Quiggle K, Ott T, Ringer D, Chládek S. Stereochemical control of ribosomal peptidyltransferase reaction. Role of amino acid side-chain orientation of acceptor substrate. Biochemistry. 1981;20:8-15.
Yamane T, Hopfield JJ, Miller DL. Discrimination between D- and L-tyrosyl transfer ribonucleic acids in peptide chain elongation. Biochemistry. 1981;20:7059-64.
Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science. 2000;289:905-20.
Lawson M, Lessen L, Jinfan W, Arjun P, Corsepius N, Rachel G, et al. Mechanisms that ensure speed and fidelity in eukaryotic translation termination. Science. 2021;373:876-82.
Ogle JM, Ramakrishnan V. Structural insights into translational fidelity. Annu Rev Biochem. 2005;74:129-77.
Calendar R, Berg P. D-tyrosyl RNA: formation, hydrolysis and utilization for protein synthesis. J Mol Biol. 1967;26:39-54.
Soutourina J, Plateau P, Blanquet S. Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J Biol Chem. 2000;275:32535-42.
Wydau S, van der Rest G, Aubard C, Plateau P, Blanquet S. Widespread distribution of cell defense against D-aminoacyl-tRNAs. J Biol Chem. 2009;284:14096-104.
Wydau S, Ferri-Fioni M-L, Blanquet S, Plateau P. GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase. Nucleic Acids Res. 2007;35:930-8.
Ferri-Fioni ML, Schmitt E, Soutourina J, Plateau P, Mechulam Y, Blanquet S. Structure of crystalline D-Tyr-tRNATyr deacylase: a representative of a new class of tRNA-dependent hydrolases. J Biol Chem. 2001;276:47285-90.
Ahmad S, Routh SB, Kamarthapu V, Chalissery J, Muthukumar S, Hussain T, et al. Mechanism of chiral proofreading during translation of the genetic code. Elife. 2013;2013:e01519.
Hussain T, Kruparani SP, Pal B, Dock-Bregeon AC, Dwivedi S, Shekar MR, et al. Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J. 2006;25:4152-62.
Hussain T, Kamarthapu V, Kruparani SP, Deshmukh MV, Sankaranarayanan R. Mechanistic insights into cognate substrate discrimination during proofreading in translation. Proc Natl Acad Sci USA. 2010;107:22117-21.
Routh SB, Pawar KI, Ahmad S, Singh S, Suma K, Kumar M, et al. Elongation factor Tu prevents misediting of Gly-tRNA(Gly) caused by the design behind the chiral proofreading site of D-aminoacyl-tRNA Deacylase. PLoS Biol. 2016;14:e1002465.
Dwivedi S, Kruparani SP, Sankaranarayanan R. A D-amino acid editing module coupled to the translational apparatus in archaea. Nat Struct Mol Biol. 2005;12:556-7.
Ahmad S, Muthukumar S, Kuncha SK, Routh SB, Yerabham ASK, Hussain T, et al. Specificity and catalysis hardwired at the RNA-protein interface in a translational proofreading enzyme. Nat Commun. 2015;6:7552.
Altman S. The RNA-protein world. RNA. 2013;19:589-90.
Phan H-D, Lai LB, Zahurancik WJ, Gopalan V. The many faces of RNA-based RNase P, an RNA-world relic. Trends Biochem Sci. 2021;46:976-91.
Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci. 2007;64:1373-94.
Beebe K, De Pouplana LR, Schimmel P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J. 2003;22:668-75.
Pawar KI, Suma K, Seenivasan A, Kuncha SK, Routh SB, Kruparani SP, et al. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. Elife. 2017;6:e24001.
Kuncha SK, Suma K, Pawar KI, Gogoi J, Routh SB, Pottabathini S, et al. A discriminator code-based DTD surveillance ensures faithful glycine delivery for protein biosynthesis in bacteria. Elife. 2018;7:e38232.
Hou YM, Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988;333:140-5.
Hou YM, Schimmel P. Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry. 1989;28:6800-4.
Crothers DM, Seno T, Söll G. Is there a discriminator site in transfer RNA? Proc Natl Acad Sci USA. 1972;69:3063-7.
Wende S, Bonin S, Götze O, Betat H, Mörl M. The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Res. 2015;43:5617-29.
Burkard U, Willis I, Söll D. Processing of histidine transfer RNA precursors. Abnormal cleavage site for RNase P. J Biol Chem. 1988;263:2447-51.
Connolly SA, Rosen AE, Musier-Forsyth K, Francklyn CS. G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase. Biochemistry. 2004;43:962-9.
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 1998;26:5017-35.
Hamann CS, Hou YM. Enzymic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide. Biochemistry. 1995;34:6527-32.
Hou YM, Zhang X, Holland JA, Davis DR. An important 2’-OH group for an RNA-protein interaction. Nucleic Acids Res. 2001;29:976-85.
Puglisi EV, Puglisi JD, Williamson JR, RajBhandary UL. NMR analysis of tRNA acceptor stem microhelices: discriminator base change affects tRNA conformation at the 3′ end. Proc Natl Acad Sci USA. 1994;91:11467-71.
Gogoi J, Bhatnagar A, Ann KJ, Pottabathini S, Singh R, Mazeed M, et al. Switching a conflicted bacterial DTD-tRNA code is essential for the emergence of mitochondria. Sci Adv. 2022;8:7307.
Gray MW. Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell. 2017;28:1285-7.
Sagan L. On the origin of mitosing cells. J Theor Biol. 1967;14:255-74.
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27:R1177-92.
Burger G, Gray MW, Forget L, Lang BF. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol. 2013;5:418-38.
Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, Lemieux C, et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387:493-7.
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, et al. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 2020;18:1-35.
Mazeed M, Singh R, Kumar P, Roy A, Raman B, Kruparani SP, et al. Recruitment of archaeal DTD is a key event toward the emergence of land plants. Sci Adv. 2021;7:eabe8890.
Kuncha SK, Mazeed M, Singh R, Kattula B, Routh SB, Sankaranarayanan R. A chiral selectivity relaxed paralog of DTD for proofreading tRNA mischarging in animalia. Nat Commun. 2018;9:511.
Sun L, Gomes AC, He W, Zhou H, Wang X, Pan DW, et al. Evolutionary gain of alanine mischarging to noncognate tRNAs with a G4:U69 base pair. J Am Chem Soc. 2016;138:12948-55.
Kuncha SK, Venkadasamy VL, Amudhan G, Dahate P, Kola SR, Pottabathini S, et al. Genomic innovation of ATD alleviates mistranslation associated with multicellularity in animalia. Elife. 2020;9:e58118.
Covarrubias L, Hernández-García D, Schnabel D, Salas-Vidal E, Castro-Obregón S. Function of reactive oxygen species during animal development: passive or active? Dev Biol. 2008;320:1-11.
Lalucque H, Silar P. NADPH oxidase: an enzyme for multicellularity? Trends Microbiol. 2003;11:9-12.
Bloomfield G, Pears C. Superoxide signalling required for multicellular development of Dictyostelium. J Cell Sci. 2003;116:3387-97.
Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, et al. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci USA. 2011;108:5526-31.
Miller SL. A production of amino acids under possible primitive earth conditions. Science. 1953;117:528-9.
Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol. 2017;52:205-19.
Gilbert W. Origin of life: the RNA world. Nature. 1986;319:618.
Cech TR. The ribosome is a ribozyme. Science. 2000;289:878-9.
Gray MW, Gopalan V. Piece by piece: building a ribozyme. J Biol Chem. 2020;295:2313-23.
Tamura K. Origins and early evolution of the tRNA molecule. Life. 2015;5:1687-99.
Schimmel P, Alexander R. Diverse RNA substrates for aminoacylation: clues to origins? Proc Natl Acad Sci USA. 1998;95:10351-3.
Nameki N, Tamura K, Asahara H, Hasegawa T. Recognition of tRNA(Gly) by three widely diverged glycyl-tRNA synthetases. J Mol Biol. 1997;268:640-7.
Tallsjö A, Kufel J, Kirsebom LA. Interaction between Escherichia coli RNase P RNA and the discriminator base results in slow product release. RNA. 1996;2:299-307.
Marin B, Nowack ECM, Melkonian M. A plastid in the making: evidence for a second primary endosymbiosis. Protist. 2005;156:425-32.
Reyes-Prieto A, Weber APM, Bhattacharya D. The origin and establishment of the plastid in algae and plants. Annu Rev Genet. 2007;41:147-68.
Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004;21:809-18.
Bhattacharya D, Medlin L. The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J Phycol. 1995;31:489-98.

Auteurs

Pradeep Kumar (P)

CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Hyderabad, India.

Akshay Bhatnagar (A)

CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.

Rajan Sankaranarayanan (R)

CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Hyderabad, India.

Articles similaires

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans
Mycobacterium tuberculosis Animals Guinea Pigs Bacterial Proteins Toxin-Antitoxin Systems
Cicer Glyphosate Glycine Herbicides Mutagenesis
Intrinsically Disordered Proteins Protein Conformation Nuclear Magnetic Resonance, Biomolecular Amino Acids Computational Biology

Classifications MeSH