Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications.
Journal
Journal of visualized experiments : JoVE
ISSN: 1940-087X
Titre abrégé: J Vis Exp
Pays: United States
ID NLM: 101313252
Informations de publication
Date de publication:
17 05 2022
17 05 2022
Historique:
entrez:
6
6
2022
pubmed:
7
6
2022
medline:
9
6
2022
Statut:
epublish
Résumé
Granular hydrogels are jammed assemblies of hydrogel microparticles (i.e., "microgels"). In the field of biomaterials, granular hydrogels have many advantageous properties, including injectability, microscale porosity, and tunability by mixing multiple microgel populations. Methods to fabricate microgels often rely on water-in-oil emulsions (e.g., microfluidics, batch emulsions, electrospraying) or photolithography, which may present high demands in terms of resources and costs, and may not be compatible with many hydrogels. This work details simple yet highly effective methods to fabricate microgels using extrusion fragmentation and to process them into granular hydrogels useful for biomedical applications (e.g., 3D printing inks). First, bulk hydrogels (using photocrosslinkable hyaluronic acid (HA) as an example) are extruded through a series of needles with sequentially smaller diameters to form fragmented microgels. This microgel fabrication technique is rapid, low-cost, and highly scalable. Methods to jam microgels into granular hydrogels by centrifugation and vacuum-driven filtration are described, with optional post-crosslinking for hydrogel stabilization. Lastly, granular hydrogels fabricated from fragmented microgels are demonstrated as extrusion printing inks. While the examples described herein use photocrosslinkable HA for 3D printing, the methods are easily adaptable for a wide variety of hydrogel types and biomedical applications.
Substances chimiques
Emulsions
0
Hydrogels
0
Microgels
0
Hyaluronic Acid
9004-61-9
Types de publication
Journal Article
Video-Audio Media
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAMS NIH HHS
ID : R01 AR077362
Pays : United States