Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity.
arabidopsis
glutathione
longevity
natural variation
seed
transcriptomics
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
27
04
2022
received:
07
01
2022
accepted:
01
06
2022
pubmed:
9
6
2022
medline:
12
8
2022
entrez:
8
6
2022
Statut:
ppublish
Résumé
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
Substances chimiques
Arabidopsis Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2708-2728Informations de copyright
© 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Références
Agacka-Modoch, M., Nagel, M., Doroszewska, T., Lewis, R.S. & Börner, A. (2015) Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.). Euphytica, 202, 479-486.
Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankenstijn-de Vries, H. & Koornneef, M. (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics, 164, 711-729.
Anders, S., Pyl, P.T. & Huber, W. (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169.
Andrews, S. FastQC: a Quality Control Tool for High Throughput Sequence Data [Online]. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Angelovici, R., Galili, G., Fernie, A.R. & Fait, A. (2010) Seed desiccation: a bridge between maturation and germination. Trends in Plant Science, 15(4), 211-218.
Arif, M.A.R. & Börner, A. (2019) Mapping of QTL associated with seed longevity in durum wheat (Triticum durum Desf.). J Appl Genetics, 60, 33-36.
Atwell, S., Huang, Y.S., Vilhjálmsson, B.J., Willems, G., Horton, M., Li, Y. et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465(7298), 627-631.
Bai, B., van der Horst, S., Cordewener, J., America, T., Hanson, J. & Bentsink, L. (2020) Seed-stored mRNAs that are specifically associated to monosomes are translationally regulated during germination. Plant Physiology, 182(1), 378-392.
Bailly, C. (2004) Active oxygen species and antioxidants in seed biology. Seed Science Research, 14, 93-107.
Bailly, C., Audigier, C., Ladonne, F., Wagner, M.H., Coste, F., Corbineau, F. et al. (2001) Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. Journal of Experimental Botany, 52(357), 701-708.
Bentsink, L., Jowett, J., Hanhart, C.J. & Koornneef, M. (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 17042-17047.
Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L. et al. (2012) Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in arabidopsis. The Plant Journal, 70(4), 704-716.
Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., Martínez, L., Sayas, E. et al. (2014) Arabidopsis thaliana HOMEOBOX 25 uncovers a role for Gibberellins in seed longevity. Plant Physiology, 164(2), 999-1010.
Bueso, E., Muñoz-Bertomeu, J., Campos, F., Martínez, C., Tello, C., Martínez-Almonacid, I. et al. (2016) Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration. The Plant Journal, 87(6), 583-596. Available at https://doi.org/10.1111/tpj.13220
Buitink, J. & Leprince, O. (2008) Intracellular glasses and seed survival in the dry state. Comptes Rendus Biologies, 331, 788-795.
Busch, W., Wunderlich, M. & Schöffl, F. (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. The Plant Journal, 41(1), 1-14.
Chantarachot, T. & Bailey-Serres, J. (2018) Polysomes, stress granules, and processing bodies: a dynamic triumvirate controlling cytoplasmic mRNA fate and function. Plant Physiology, 176(1), 254-269.
Chen, X., Yin, G., Börner, A., Xin, X., He, J., Nagel, M. et al. (2018) Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance. Plant Physiology and Biochemistry: PPB/Société française de physiologie végétale, 130, 455-463.
Chibani, K., Ali-Rachedi, S., Job, C., Job, D., Jullien, M. & Grappin, P. (2006) Proteomic analysis of seed dormancy in arabidopsis. Plant Physiology, 142(4), 1493-1510.
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K. & Scheible, W.R. (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis. Plant Physiology, 139(1), 5-17.
Davies, E., Stankovic, B., Vian, A. & Wood, A.J. (2012) Where has all the message gone? Plant Science, 185-186, 23-32.
Debeaujon, I., Léon-Kloosterziel, K.M. & Koornneef, M. (2000) Influence of the testa on seed dormancy, germination, and longevity in arabidopsis. Plant Physiology, 122(2), 403-414.
Dekkers, B.J., He, H., Hanson, J., Willems, L.A., Jamar, D.C., Cueff, G. et al. (2016) The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. The Plant Journal, 85(4), 451-465.
Demonsais, L., Utz-Pugin, A., Loubéry, S. & Lopez-Molina, L. (2020) Identification of tannic cell walls at the outer surface of the endosperm upon Arabidopsis seed coat rupture. The Plant Journal, 104(3), 567-580.
Dirk, L.M.A. & Downie, A.B. (2018) An examination of job's rule: protection and repair of the proteins of the translational apparatus in seeds. Seed Science Research, 8, 168-181.
Ebina, I., Takemoto-Tsutsumi, M., Watanabe, S., Koyama, H., Endo, Y., Kimata, K. et al. (2015) Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence-dependent manner. Nucleic Acids Research, 43(3), 1562-1576.
Edstam, M.M. & Edqvist, J. (2014) Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana. Physiologia Plantarum, 152(1), 32-42.
El-Maarouf-Bouteau, H., Meimoun, P., Job, C., Job, D. & Bailly, C. (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Frontiers of Plant Science, 4, 77.
Gallardo, K., Job, C., Groot, S.P., Puype, M., Demol, H., Vandekerckhove, J. et al. (2001) Proteomic analysis of arabidopsis seed germination and priming. Plant Physiology, 126(2), 835-848.
He, H., de Souza Vidigal, D., Snoek, L.B., Schnabel, S., Nijveen, H., Hilhorst, H. et al. (2014) Interaction between parental environment and genotype affects plant and seed performance in arabidopsis. Journal of Experimental Botany, 65(22), 6603-6615.
Hundertmark, M., Buitink, J., Leprince, O. & Hincha, D.K. (2011) The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Science Research, 21, 165-173.
Jia, T., Zhang, B., You, C., Zhang, Y., Zeng, L., Li, S. et al. (2017) The arabidopsis MOS4-associated complex promotes MicroRNA biogenesis and precursor messenger RNA splicing. The Plant Cell, 29(10), 2626-2643.
Joshi, H.J., Christiansen, K.M., Fitz, J., Cao, J., Lipzen, A., Martin, J. et al. (2012) 1001 proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. Bioinformatics, 28(10), 1303-1306.
Kaur, H., Petla, B.P., Kamble, N.U., Singh, A., Rao, V., Salvi, P. et al. (2015) Differentially expressed seed ageing responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Frontiers of Plant Science, 6, 713.
Khan, A. & Mathelier, A. (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics, 18, 287.
Kibinza, S., Bazin, J., Bailly, C., Farrant, J.M., Corbineau, F. & El-Maarouf-Bouteau, H. (2011) Catalase is a key enzyme in seed recovery from ageing during priming. Plant Science, 181(3), 309-315.
Kim, D., Langmead, B. & Salzberg, S.L. (2015) HISAT: a fast-spliced aligner with low memory requirements. Nature Methods, 12, 357-360.
Kimura, M. & Nambara, E. (2010) Stored and neosynthesized mRNA in arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Molecular Biology, 73(1-2), 119-129.
Kliebenstein, D.J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. et al. (2001) Genetic control of natural variation in arabidopsis glucosinolate accumulation. Plant Physiology, 126(2), 811-825.
Knoch, D., Riewe, D., Meyer, R.C., Boudichevskaia, A., Schmidt, R. & Altmann, T. (2017) Genetic dissection of metabolite variation in arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism. Journal of Experimental Botany, 68(7), 1655-1667.
Kong, L., Huo, H. & Mao, P. (2015) Antioxidant response and related gene expression in aged oat seed. Frontiers of Plant Science, 19, 6, 158.
Koo, H.J., Park, S.M., Kim, K.P., Suh, M.C., Lee, M.O., Lee, S.K. et al. (2015) Small heat shock proteins can release light dependence of tobacco seed during germination. Plant Physiology, 167(3), 1030-1038.
Kotak, S., Vierling, E., Bäumlein, H. & von Koskull-Döring, P. (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of arabidopsis. The Plant Cell, 19(1), 182-195.
Kranner, I. (1998). Determination of Glutathione, Glutathione Disulphide and Two Related Enzymes,Glutathione Reductase and Glucose-6-Phosphate Dehydrogenase, in Fungal and Plant Cells. In: Varma A, ed. Springer Lab Manual. Mycorrhiza Manual. Berlin, Heidelberg: Springer, 227-241.
Kranner, I. & Birtic, S. (2005) A modulating role for antioxidants in desiccation tolerance. Integrative and comparative biology, 45(5), 734-740.
Kranner, I., Birtić, S., Anderson, K.M. & Pritchard, H.W. (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radical Biology and Medicine, 15 40(12), 2155-2165.
Kurihara, Y., Makita, Y., Kawashima, M., Fujita, T., Iwasaki, S. & Matsui, M. (2018) Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 115(30), 7831-7836.
Kusunoki, K., Nakano, Y., Tanaka, K., Sakata, Y., Koyama, H. & Kobayashi, Y. (2017) Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance. Plant, Cell and Environment, 40(2), 249-263.
Leon-Kloosterziel, K.M., Keijzer, C.J. & Koornneef, M. (1994) A seed shape mutant of arabidopsis that is affected in integument development. The Plant Cell, 6(3), 385-392.
Li, Z., Wu, S., Chen, J., Wang, X., Gao, J., Ren, G. et al. (2017) NYEs/SGRs-mediated chlorophyll degradation is critical for detoxification during seed maturation in arabidopsis. The Plant Journal, 92(4), 650-661.
Lohmann, C., Eggers-Schumacher, G., Wunderlich, M. & Schöffl, F. (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in arabidopsis. Molecular Genetics and Genomics, 271(1), 11-21.
Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biology, 15(12), 550.
Ma, W., Guan, X., Li, J., Pan, R., Wang, L., Liu, F. et al. (2019) Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4716-4721.
Maisnier-Patin, S. & Andersson, D.I. (2004) Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Research in Microbiology, 155(5), 360-369. Available at https://doi.org/10.1016/j.resmic.2004.01.019
Maldonado-Bonilla, L.D., Eschen-Lippold, L., Gago-Zachert, S., Tabassum, N., Bauer, N., Scheel, D. et al. (2014) The arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses. Plant and Cell Physiology, 55(2), 412-425.
Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10-12.
Molina, I., Ohlrogge, J.B. & Pollard, M. (2008) Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal, 53(3), 437-449.
Mondoni, A., Probert, R.J., Rossi, G., Vegini, E. & Hay, F.R. (2011) Seeds of alpine plants are short lived: implications for long-term conservation. Annali di Botanica, 107(1), 171-179.
Morscher, F., Kranner, I., Arc, E., Bailly, C. & Roach, T. (2015) Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing. Annali di Botanica, 116, 669-678.
Nagel, M., Kranner, I., Neumann, K., Rolletschek, H., Seal, C.E., Colville, L. et al. (2015) Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant, Cell and Environment, 38(6), 1011-1022.
Nakabayashi, K., Bartsch, M., Ding, J. & Soppe, W.J. (2015) Seed dormancy in arabidopsis requires Self-Binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing. PLoS Genetics, 11(12), e1005737.
Nakabayashi, K., Bartsch, M., Xiang, Y., Miatton, E., Pellengahr, S., Yano, R. et al. (2012) The time required for dormancy release in arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. The Plant Cell, 24(7), 2826-2838.
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. & Nambara, E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal, 41(5), 697-709.
Nakajima, S., Ito, H., Tanaka, R. & Tanaka, A. (2012) Chlorophyll b reductase plays an essential role in maturation and storability of arabidopsis seeds. Plant Physiology, 160(1), 261-273.
Nguyen, T.P., Cueff, G., Hegedus, D.D., Rajjou, L. & Bentsink, L. (2015) A role for seed storage proteins in arabidopsis seed longevity. Journal of Experimental Botany, 66(20), 6399-6413.
Nguyen, T.P., Keizer, P., van Eeuwijk, F., Smeekens, S. & Bentsink, L. (2012) Natural variation for seed longevity and seed dormancy are negatively correlated in arabidopsis. Plant Physiology, 160(4), 2083-2092.
Oñate-Sánchez, L. & Vicente-Carbajosa, J. (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1, 93.
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14(4), 417-419.
Pavlicev, M. & Wagner, G.P. (2012) A model of developmental evolution: selection, pleiotropy and compensation. Trends in Ecology and Evolution (Personal Edition), 27(6), 316-322.
Pellizzaro, A., Neveu, M., Lalanne, D., Ly Vu, B., Kanno, Y., Seo, M. et al. (2020) A role for auxin signalling in the acquisition of longevity during seed maturation. New Phytologist, 225(1), 284-296.
Pierre, J.S., Perroux, J., Whan, A., Rae, A.L. & Bonnett, G.D. (2015) Poor fertility, short longevity, and low abundance in the soil seed bank limit volunteer sugarcane from seed. Frontiers in Bioengineering and Biotechnology, 3, 83.
Prieto-Dapena, P., Castaño, R., Almoguera, C. & Jordano, J. (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology, 142(3), 1102-1112.
Probert, R., Adams, J., Coneybeer, J., Crawford, A. & Hay, F. (2007) Seed quality for conservation is critically affected by pre-storage factors. Australian Journal of Botany, 55, 326-335.
Rajjou, L., Lovigny, Y., Groot, S.P., Belghazi, M., Job, C. & Job, D. (2008) Proteome-wide characterization of seed ageing in arabidopsis: a comparison between artificial and natural ageing protocols. Plant Physiology, 148(1), 620-641.
Renard, J., Martínez-Almonacid, I., Queralta Castillo, I., Sonntag, A., Hashim, A., Bissoli, G. et al. (2021) Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. New Phytologist, 231(2), 679-694.
Renard, J., Martínez-Almonacid, I., Sonntag, A., Molina, I., Moya-Cuevas, J., Bissoli, G. et al. (2020b) and PRX25, peroxidases regulated by COG1, are involved in seed longevity in arabidopsis. Plant, Cell and Environment, 43(2), 315-326.
Renard, J., Niñoles, R., Martínez-Almonacid, I., Gayubas, B., Mateos-Fernández, R., Bissoli, G. et al. (2020a) Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. Plant, Cell and Environment, 43(10), 2523-2539.
Reyes, A. & Huber, W. (2018) Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Research, 46(2), 582-592.
Righetti, K., Vu, J.L., Pelletier, S., Vu, B.L., Glaab, E., Lalanne, D. et al. (2015) Inference of Longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. The Plant Cell, 27(10), 2692-2708.
Roach, T., Beckett, R.P., Minibayeva, F.V., Colville, L., Whitaker, C., Chen, H. et al. (2010) Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant, Cell and Environment, 33(1), 59-75.
Rojas-Duran, M.F. & Gilbert, W.V. (2012) Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA, 18(12), 2299-2305.
Saatkamp, A., Affre, L., Baumberger, T., Dumas, P.J., Gasmi, A., Gachet, S. et al. (2011) Soil depth detection by seeds and diurnally fluctuating temperatures: different dynamics in 10 annual plants. Plant and Soil, 349, 331-340.
Sajeev, N., Bai, B. & Bentsink, L. (2019) Seeds: a unique system to study translational regulation. Trends in Plant Science, 24(6), 487-495.
Sano, N., Kim, J.S., Onda, Y., Nomura, T., Mochida, K., Okamoto, M. et al. (2017) RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments. Scientific Reports, 7(1), 8095.
Sano, N., Rajjou, L. & North, H.M. (2020) Lost in translation: physiological roles of stored mRNAs in seed germination. Plants (Basel), 9(3), 347.
Sano, N., Rajjou, L., North, H.M., Debeaujon, I., Marion-Poll, A. & Seo, M. (2016) Staying alive: molecular aspects of seed longevity. Plant and Cell Physiology, 57(4), 660-674.
Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M., Della & Penna, D. (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell, 16(6), 1419-1432.
Schafer, F.Q. & Buettner, G.R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30(11), 1191-1212.
Schöffl, F., Prändl, R. & Reindl, A. (1998) Regulation of the heat-shock response. Plant Physiology, 117(4), 1135-1141.
Schwember, A.R. & Bradford, K.J. (2010) Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany, 61(15), 4423-4436.
Shao, Q., Liu, X., Su, T., Ma, C. & Wang, P. (2019) New insights into the role of seed oil body proteins in metabolism and plant development. Frontiers of Plant Science, 10, 1568.
Shen, Y., Zhao, C. & Liu, W. (2011) Seed vigor and plant competitiveness resulting from seeds of Eupatorium adenophorum in a persistent soil seed bank, flora - morphology, distribution. Functional Ecology of Plants, 206(11), 935-942.
Standart, N. & Weil, D. (2018) P-bodies: cytosolic droplets for coordinated mRNA storage. Trends in Genetics, 34(8), 612-626.
Sugliani, M., Rajjou, L., Clerkx, E.J., Koornneef, M. & Soppe, W.J. (2009) Natural modifiers of seed longevity in the arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3). New Phytologist, 184(4), 898-908.
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 6(7), e21800.
Tabassum, N., Eschen-Lippold, L., Athmer, B., Baruah, M., Brode, M., Maldonado-Bonilla, L.D. et al. (2020) Phosphorylation-dependent control of an RNA granule-localized protein that fine-tunes defence gene expression at a post-transcriptional level. The Plant Journal, 101(5), 1023-1039.
Tejedor-Cano, J., Prieto-Dapena, P., Almoguera, C., Carranco, R., Hiratsu, K., Ohme-Takagi, M. et al. (2010) Loss of function of the HSFA9 seed longevity program. Plant, Cell and Environment, 33(8), 1408-1417.
Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z. et al. (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45(W1), W122-W129.
van Veen, H., Vashisht, D., Akman, M., Girke, T., Mustroph, A., Reinen, E. et al. (2016) Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype- and organ-specific responses to flooding stress. Plant Physiology, 172(2), 668-689.
Vitting-Seerup, K. & Sandelin, A. (2019) IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics, 35(21), 4469-4471.
Walters, C., Wheeler, L. & Stanwood, P.C. (2004) Longevity of cryogenically stored seeds. Cryobiology, 48(3), 229-244.
Wang, W., He, A., Peng, S., Huang, J., Cui, K. & Nie, L. (2018) The effect of storage condition and duration on the deterioration of primed rice seeds. Frontiers of Plant Science, 9, 172.
Wang, W.Q., Ye, J.Q., Rogowska-Wrzesinska, A., Wojdyla, K.I., Jensen, O.N., Møller, I.M. et al. (2014) Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance. Journal of Proteome Research, 13(2), 606-626.
Waterworth, W.M., Bray, C.M. & West, C.E. (2019) Seeds and the art of genome maintenance. Frontiers of Plant Science, 10, 706.
Waterworth, W.M., Footitt, S., Bray, C.M., Finch-Savage, W.E. & West, C.E. (2016) DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 9647-9652.
Wozny, D., Kramer, K., Finkemeier, I., Acosta, I.F. & Koornneef, M. (2018) Genes for seed longevity in barley identified by genomic analysis on near isogenic lines. Plant, Cell and Environment, 41(8), 1895-1911.
Zhang, R., Calixto, C.P.G., Marquez, Y., Venhuizen, P., Tzioutziou, N.A., Guo, W. et al. (2017) A high-quality arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Research, 45(9), 5061-5073.
Zhao, T., Huan, Q., Sun, J., Liu, C., Hou, X., Yu, X. et al. (2019) Impact of poly(A)-tail G-content on arabidopsis PAB binding and their role in enhancing translational efficiency. Genome Biology, 20(1), 189.
Zinsmeister, J., Lalanne, D., Terrasson, E., Chatelain, E., Vandecasteele, C., Vu, B.L. et al. (2016) ABI5 is a regulator of seed maturation and longevity in legumes. The Plant Cell, 28(11), 2735-2754.
Zuo, J.H., Chen, F.Y., Li, X.Y., Xia, X.C., Cao, H. & Liu, J.D. et al. (2019) Genome-wide association study reveals loci associated with seed longevity in common wheat (Triticum aestivum L.). Plant Breed, 139(2), 295-303.