Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
09 06 2022
Historique:
received: 16 07 2021
accepted: 23 05 2022
entrez: 10 6 2022
pubmed: 11 6 2022
medline: 14 6 2022
Statut: epublish

Résumé

Combined phenomic and genomic approaches are required to evaluate the margin of progress of breeding strategies. Here, we analyze 65 years of genetic progress in maize yield, which was similar (101 kg ha

Identifiants

pubmed: 35680899
doi: 10.1038/s41467-022-30872-w
pii: 10.1038/s41467-022-30872-w
pmc: PMC9184527
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3225

Informations de copyright

© 2022. The Author(s).

Références

Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
pubmed: 21551030 doi: 10.1126/science.1204531
Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).
pubmed: 20150489 doi: 10.1126/science.1183700
FAOSTAT. Food and agricultural data http://faostat.fao.org/ .
Navarro, J. A. R. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49, 476–480 (2017).
doi: 10.1038/ng.3784
Parent, B. et al. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc. Natl Acad. Sci. USA 115, 10642–10647 (2018).
pubmed: 30275304 pmcid: 6196545 doi: 10.1073/pnas.1720716115
Brisson, N. et al. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop. Res. 119, 201–212 (2010).
doi: 10.1016/j.fcr.2010.07.012
Duvick, D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).
doi: 10.1016/S0065-2113(05)86002-X
Kumar, A. et al. Genetic gain for rice yield in rainfed environments in India. Field Crop. Res. https://doi.org/10.1016/j.fcr.2020.107977 (2021).
Rijk, B., van Ittersum, M. & Withagen, J. Genetic progress in Dutch crop yields. Field Crop. Res. 149, 262–268 (2013).
doi: 10.1016/j.fcr.2013.05.008
Messina, C. D., Podlich, D., Dong, Z. S., Samples, M. & Cooper, M. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance. J. Exp. Bot. 62, 855–868 (2011).
pubmed: 21041371 doi: 10.1093/jxb/erq329
Boehm, J. D. et al. Genetic improvement of US soybean in maturity groups V, VI, and VII. Crop Sci. 59, 1838–1852 (2019).
doi: 10.2135/cropsci2018.10.0627
Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).
pubmed: 31209285 doi: 10.1038/s41477-019-0445-5
Assefa, Y. et al. A new insight into corn yield: trends from 1987 through 2015. Crop Sci. 57, 2799–2811 (2017).
doi: 10.2135/cropsci2017.01.0066
Abdala, L. J. et al. Dry milling grain quality changes in Argentinean maize genotypes released from 1965 to 2016. Field Crop. Res. 226, 74–82 (2018).
doi: 10.1016/j.fcr.2018.07.008
Sadras, V. O. & Richards, R. A. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen. J. Exp. Bot. 65, 1981–1995 (2014).
pubmed: 24638898 doi: 10.1093/jxb/eru061
Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6204 (2014).
pubmed: 24596174 doi: 10.1093/jxb/eru064
Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905 (2019).
pubmed: 31043760 doi: 10.1038/s41588-019-0393-z
Wang, B. B. et al. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565 (2020).
pubmed: 32341525 doi: 10.1038/s41588-020-0616-3
Reyes, A. et al. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt. J. Exp. Bot. 66, 7339–7346 (2015).
pubmed: 26428065 pmcid: 4765797 doi: 10.1093/jxb/erv430
Gage, J. L., White, M. R., Edwards, J. W., Kaeppler, S. & de Leon, N. Selection signatures underlying dramatic male inflorescence transformation during modern hybrid maize breeding. Genetics 210, 1125–1138 (2018).
pubmed: 30257936 pmcid: 6218240 doi: 10.1534/genetics.118.301487
Millet, E. J. et al. Genome-wide analysis of yield in europe: allelic effects vary with drought and heat scenarios. Plant Physiol. 172, 749–764 (2016).
pubmed: 27436830 pmcid: 5047082
Parent, B. et al. Quantifying wheat sensitivities to environmental constraints to dissect genotype x environment interactions in the field. Plant Physiol. 174, 1669–1682 (2017).
pubmed: 28546436 pmcid: 5490905 doi: 10.1104/pp.17.00372
Tardieu, F., Simonneau, T. & Muller, B. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 69, 733–759 (2018).
pubmed: 29553801 doi: 10.1146/annurev-arplant-042817-040218
Tardieu, F., Cabrera-Bosquet, L., Pridmore, T. & Bennett, M. Plant phenomics, from sensors to knowledge. Curr. Biol. 27, R770–R783 (2017).
pubmed: 28787611 doi: 10.1016/j.cub.2017.05.055
Tardieu, F., Granato, I. S. C., Van Oosterom, E. J., Parent, B. & Hammer, G. L. Are crop and detailed physiological models equally ‘mechanistic’ for predicting the genetic variability of whole-plant behaviour? The nexus between mechanisms and adaptive strategies. In Silico Plants https://doi.org/10.1093/insilicoplants/diaa011 (2020).
Cabrera-Bosquet, L. et al. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. N. Phytol. 212, 269–281 (2016).
doi: 10.1111/nph.14027
Caldeira, C., Jeanguenin, L., Chaumont, F. & Tardieu, F. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nat. Commun. 5, 5365 (2014).
pubmed: 25370944 doi: 10.1038/ncomms6365
Negro, S. S. et al. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biol. https://doi.org/10.1186/s12870-019-1926-4 (2019).
Millet, E. J. et al. Genomic prediction of maize yield across European environmental conditions. Nat. Genet. 51, 952 (2019).
pubmed: 31110353 doi: 10.1038/s41588-019-0414-y
Alvarez Prado, S. et al. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant Cell Environ. 41, 314–326 (2018).
doi: 10.1111/pce.13083
Lacube, S. et al. Distinct controls of leaf widening and elongation by light and evaporative demand in maize. Plant Cell Environ. 40, 2017–2028 (2017).
pubmed: 28639691 doi: 10.1111/pce.13005
Chen, T. W. et al. Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies. J. Exp. Bot. 70, 2523–2534 (2019).
pubmed: 30137451 pmcid: 6487589 doi: 10.1093/jxb/ery309
Castelletti, S. et al. Maize adaptation across temperate climates was obtained via expression of two florigen genes. PLoS Genet. https://doi.org/10.1371/journal.pgen.1008882 (2020).
Allier, A., Teyssedre, S., Lehermeier, C., Charcosset, A. & Moreau, L. Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs. Theor. Appl. Genet. 133, 201–215 (2020).
pubmed: 31595338 doi: 10.1007/s00122-019-03451-9
Rizzo, G. et al. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proc. Natl Acad. Sci. USA 119, e2113629119 (2022).
pubmed: 35042796 pmcid: 8795556 doi: 10.1073/pnas.2113629119
Assefa, Y. et al. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci. Rep. https://doi.org/10.1038/s41598-018-23362-x (2018).
Evans, L. T. & Fischer, R. A. Yield potential: its definition, measurement, and significance. Crop Sci. 39, 1544–1551 (1999).
doi: 10.2135/cropsci1999.3961544x
Oury, V., Tardieu, F. & Turc, O. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiol. 171, 986–996 (2016).
pubmed: 26598464
Luque, S. F., Cirilo, A. G. & Otegui, M. E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crop. Res. 95, 383–397 (2006).
doi: 10.1016/j.fcr.2005.04.007
Campos, H. et al. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US corn belt. Maydica 51, 369–381 (2006).
Oury, V. et al. Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering? Plant Physiol. 171, 997–1008 (2016).
pubmed: 27208256 pmcid: 4902574
Fuad-Hassan, A., Tardieu, F. & Turc, O. Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ. 31, 1349–1360 (2008).
pubmed: 18518916 doi: 10.1111/j.1365-3040.2008.01839.x
Bolanos, J. & Edmeades, G. O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop. Res. 48, 65–80 (1996).
doi: 10.1016/0378-4290(96)00036-6
Perez, R. P. A. et al. Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection. Plant, Cell Environ. 42, 2105–2119 (2019).
doi: 10.1111/pce.13539
Ma, D. L. et al. Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. Eur. J. Agron. 58, 1–10 (2014).
doi: 10.1016/j.eja.2014.04.001
Duvick, D. N. & Cassman, K. G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci. 39, 1622–1630 (1999).
doi: 10.2135/cropsci1999.3961622x
Truong, S. K., McCormick, R. F., Rooney, W. L. & Mullet, J. E. Harnessing genetic variation in leaf angle to increase productivity of Sorghum bicolor. Genetics 201, 1229–U1809 (2015).
pubmed: 26323882 pmcid: 4649647 doi: 10.1534/genetics.115.178608
Palmer, A. F. E., Heichel, G. H. & Musgrave, R. B. Patterns of translocation, respiratory loss, and redistribution of C-14 in maize labeled after flowering. Crop Sci. 13, 371–376 (1973).
doi: 10.2135/cropsci1973.0011183X001300030025x
Zinselmeier, C., Jeong, B. R. & Boyer, J. S. Starch and the control of kernel number in maize at low water potentials. Plant Physiol. 121, 25–35 (1999).
pubmed: 10482657 pmcid: 59374 doi: 10.1104/pp.121.1.25
Sanguineti, M. C., Duvick, D. N., Smith, S., Landi, P. & Tuberosa, R. Effects of long-term selection of seedling traits and ABA accumulation in commercial maize hybrids Maydica 51, 329–338 (2006).
Caldeira, C. F. et al. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. Plant Physiol. 164, 1718–1730 (2014).
pubmed: 24420931 pmcid: 3982736 doi: 10.1104/pp.113.228379
Cooper, M. et al. Integrating genetic gain and gap analysis to predict improvements in crop productivity. Crop Sci. 60, 582–604 (2020).
doi: 10.1002/csc2.20109
Gunther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205 (2013).
pubmed: 23821598 pmcid: 3761302 doi: 10.1534/genetics.113.152462
Chapman, S., Cooper, M., Podlich, D. & Hammer, G. Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron. J. 95, 99–113 (2003).
doi: 10.2134/agronj2003.9900
Whish, J. et al. Modelling the effects of row configuration on sorghum yield reliability in north-eastern Australia. Aust. J. Agric. Res. 56, 11–23 (2005).
doi: 10.1071/AR04128
Avramova, V. et al. Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize. Theor. Appl. Genet. 132, 53–63 (2019).
pubmed: 30244394 doi: 10.1007/s00122-018-3193-4
Sanguineti, M. et al. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50, 1289–1297 (1999).
doi: 10.1093/jxb/50.337.1289
Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).
doi: 10.1038/s43016-020-00165-w
Curin, F., Severini, A. D., Gonzalez, F. G. & Otegui, M. E. Water and radiation use efficiencies in maize: breeding effects on single-cross Argentine hybrids released between 1980 and 2012. Field Crop. Res. https://doi.org/10.1016/j.fcr.2019.107683 (2020).
Cagnola, J. I. et al. Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops. J. Exp. Bot. 72, 3902–3913 (2021).
pubmed: 33744949 doi: 10.1093/jxb/erab119
Cooper, M., Voss-Fels, K. P., Messina, C. D., Tang, T. & Hammer, G. L. Tackling G x E x M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theor. Appl. Genet. 134, 1625–1644 (2021).
pubmed: 33738512 pmcid: 8206060 doi: 10.1007/s00122-021-03812-3
Unterseer, S. et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics https://doi.org/10.1186/1471-2164-15-823 (2014).
Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).
pubmed: 30100085 pmcid: 6128308 doi: 10.1016/j.ajhg.2018.07.015
Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).
pubmed: 19965430 doi: 10.1126/science.1178534
Coffman, S. M., Hufford, M. B., Andorf, C. M. & Lubberstedt, T. Haplotype structure in commercial maize breeding programs in relation to key founder lines. Theor. Appl. Genet. 133, 547–561 (2020).
pubmed: 31749017 doi: 10.1007/s00122-019-03486-y
Technow, F., Schrag, T. A., Schipprack, W. & Melchinger, A. E. Identification of key ancestors of modern germplasm in a breeding program of maize. Theor. Appl. Genet. 127, 2545–2553 (2014).
pubmed: 25208647 doi: 10.1007/s00122-014-2396-6
Ganal, M. W. et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE https://doi.org/10.1371/journal.pone.0028334 (2011).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
pubmed: 10835412 pmcid: 1461096 doi: 10.1093/genetics/155.2.945
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl Acad. Sci. USA 70, 3321–3323 (1973).
pubmed: 4519626 pmcid: 427228 doi: 10.1073/pnas.70.12.3321
Le Clerc, V. et al. Indicators to assess temporal genetic diversity in the French Catalogue: no losses for maize and peas. Theor. Appl. Genet. 113, 1197–1209 (2006).
pubmed: 16900350 doi: 10.1007/s00122-006-0368-1
Hammer, G. L. et al. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 61, 2185–2202 (2010).
pubmed: 20400531 doi: 10.1093/jxb/erq095
Lacube, S. et al. Simulating the effect of flowering time on maize individual leaf area in contrasting environmental scenarios. J. Exp. Bot. 71, 5577–5588 (2020).
pubmed: 32526015 pmcid: 7501815 doi: 10.1093/jxb/eraa278
van Eeuwijk, F. A. et al. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci. 282, 23–39 (2019).
pubmed: 31003609 doi: 10.1016/j.plantsci.2018.06.018
Velazco, J. G. et al. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model. Theor. Appl. Genet. 130, 1375–1392 (2017).
pubmed: 28374049 pmcid: 5487705 doi: 10.1007/s00122-017-2894-4
Sadok, W. et al. Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant, Cell Environ. 30, 135–146 (2007).
doi: 10.1111/j.1365-3040.2006.01611.x
Parent, B. & Tardieu, F. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. N. Phytol. 194, 760–774 (2012).
doi: 10.1111/j.1469-8137.2012.04086.x
Welcker, C. et al. A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant Physiol. 157, 718–729 (2011).
pubmed: 21795581 pmcid: 3192567 doi: 10.1104/pp.111.176479
Beauchene, K. et al. Management and characterization of abiotic stress via PhenoFieldR (R), a high-throughput field phenotyping platform. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00904 (2019).
Liu, S. Y. et al. Estimation of plant and canopy architectural traits using the digital plant phenotyping platform. Plant Physiol. 181, 881–890 (2019).
pubmed: 31420444 pmcid: 6836827 doi: 10.1104/pp.19.00554
Verger, A. et al. Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sens. Environ. 152, 654–664 (2014).
doi: 10.1016/j.rse.2014.06.006
Allen, R. G., Pereira, L. S., Raes, D., Smith, M. Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, http://www.fao.org/docrep/X0490E/x0490e00.htm (1998).
Topner, K., Rosa, G. J. M., Gianola, D. & Schon, C. C. Bayesian networks illustrate genomic and residual trait connections in maize (Zea mays L.). G3 7, 2779–2789 (2017).
pubmed: 28637811 pmcid: 5555481 doi: 10.1534/g3.117.044263
Scutari, M., Howell, P., Balding, D. J. & Mackay, I. Multiple quantitative trait analysis using bayesian networks. Genetics 198, 129–137 (2014).
pubmed: 25236454 pmcid: 4174925 doi: 10.1534/genetics.114.165704
R Core Team. The R project for statistical computing. Foundation for Statistical Computing, Vienna, Austria, 2020. https://www.R-project.org/ .
Zheng, X. W. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
pubmed: 23060615 pmcid: 3519454 doi: 10.1093/bioinformatics/bts606
Yang, J. A., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Phipson, B. & Smyth, G. K. Permutation P-values Should Never Be Zero: Calculating exact P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. https://doi.org/10.2202/1544-6115.1585 (2010).

Auteurs

Claude Welcker (C)

LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.

Nadir Abusamra Spencer (NA)

LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.

Olivier Turc (O)

LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.

Italo Granato (I)

LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.

Romain Chapuis (R)

DIASCOPE, Université de Montpellier, INRAE, Institut Agro, Montpellier, France.

Delphine Madur (D)

GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.

Katia Beauchene (K)

ARVALIS, Institut du Vegetal, Ouzouer le Marché, France.

Brigitte Gouesnard (B)

AGAP institut Univ. Montpellier, INRAE, CIRAD, Institut Agro, Montpellier, France.

Xavier Draye (X)

Catholic Univ. Louvain, Earth & Life Institute, Louvain la Neuve, Belgium.

Carine Palaffre (C)

INRAE, Univ Bordeaux, Saint Martin de Hinx, France.

Josiane Lorgeou (J)

ARVALIS, Institut du Vegetal, Boigneville, France.

Stephane Melkior (S)

RAGT, Port de Lanne, France.

Colin Guillaume (C)

MAS seeds, Haut-Mauco, France.

Thomas Presterl (T)

KWS SAAT SE & Co. KGaA, Einbeck, Germany.

Alain Murigneux (A)

Limagrain Europe, Chappes, France.

Randall J Wisser (RJ)

LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.

Emilie J Millet (EJ)

Biometris, WUR, Wageningen, The Netherlands.

Fred van Eeuwijk (F)

Biometris, WUR, Wageningen, The Netherlands.

Alain Charcosset (A)

GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.

François Tardieu (F)

LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France. francois.tardieu@inrae.fr.

Articles similaires

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Zea mays Triticum China Seasons Crops, Agricultural
Humans Mendelian Randomization Analysis Graves Disease Aging Genome-Wide Association Study

Classifications MeSH