Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 06 2022
10 06 2022
Historique:
received:
07
08
2021
accepted:
30
05
2022
entrez:
10
6
2022
pubmed:
11
6
2022
medline:
15
6
2022
Statut:
epublish
Résumé
Archaea are common constituents of the gut microbiome of humans, ruminants, and termites but little is known about their diversity and abundance in other animals. Here, we analyse sequencing and quantification data of archaeal and bacterial 16S rRNA genes from 250 species of animals covering a large taxonomic spectrum. We detect the presence of archaea in 175 animal species belonging to invertebrates, fish, amphibians, birds, reptiles and mammals. We identify five dominant gut lineages, corresponding to Methanobrevibacter, Methanosphaera, Methanocorpusculum, Methanimicrococcus and "Ca. Methanomethylophilaceae". Some archaeal clades, notably within Methanobrevibacter, are associated to certain hosts, suggesting specific adaptations. The non-methanogenic lineage Nitrososphaeraceae (Thaumarchaeota) is frequently present in animal samples, although at low abundance, but may have also adapted to the gut environment. Host phylogeny, diet type, fibre content, and intestinal tract physiology are major drivers of the diversity and abundance of the archaeome in mammals. The overall abundance of archaea is more influenced by these factors than that of bacteria. Methanogens reducing methyl-compounds with H
Identifiants
pubmed: 35688919
doi: 10.1038/s41467-022-31038-4
pii: 10.1038/s41467-022-31038-4
pmc: PMC9187648
doi:
Substances chimiques
Dietary Fiber
0
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3358Informations de copyright
© 2022. The Author(s).
Références
Blaut, M. & Clavel, T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J. Nutr. 137, 751S-755S (2007).
pubmed: 17311972
doi: 10.1093/jn/137.3.751S
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
pubmed: 22972295
pmcid: 3577372
doi: 10.1038/nature11550
Stevens, C. E. & Hume, I. D. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev. 78, 393–427 (1998).
pubmed: 9562034
doi: 10.1152/physrev.1998.78.2.393
Kapitan, M., Niemiec, M. J., Steimle, A., FrickIlse, J. S. & Jacobsen, D. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. In Fungal Physiology and Immunopathogenesis 422 (Springer, Cham, 2018).
Borrel, G., Gribaldo, S., Brugère, J.-F., Schmitz, R. & Moissl-Eichinger, C. The host-associated archaeome. Nat. Rev. Microbiol. 18, 622–636 (2020).
pubmed: 32690877
doi: 10.1038/s41579-020-0407-y
Gordon, J. I., Dewey, K. G., Mills, D. A. & Medzhitov, R. M. The human gut microbiota and undernutrition. Sci. Transl. Med. 4, 137ps12 (2012).
pubmed: 22674549
doi: 10.1126/scitranslmed.3004347
Barko, P. C., McMichael, M. A., Swanson, K. S. & Williams, D. A. The gastrointestinal microbiome: A review. J. Vet. Intern. Med. 32, 9–25 (2018).
pubmed: 29171095
doi: 10.1111/jvim.14875
Arrieta, M.-C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M. & Finlay, B. The intestinal microbiome in early life: Health and disease. Front. Immunol. 5, 1–18 (2014).
doi: 10.3389/fimmu.2014.00427
Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio 11, 1–14 (2020).
doi: 10.1128/mBio.02901-19
Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 1–15 (2019).
doi: 10.1038/s41467-019-10191-3
Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).
pubmed: 24118574
doi: 10.1111/mec.12501
Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).
pubmed: 28230052
pmcid: 5331214
doi: 10.1038/ncomms14319
Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N.Y. Acad. Sci. 1125, 171–189 (2008).
pubmed: 18378594
doi: 10.1196/annals.1419.019
Hackstein, J. H. P. Genetic and evolutionary aspects of methanogenesis. EDP Sci. 37, 5–8 (1997).
Deevong, P. et al. Isolation and detection of methanogens from the gut of higher termites. Microbes Environ. 19, 221–226 (2004).
doi: 10.1264/jsme2.19.221
Koskinen, K. et al. First insights into the diverse human archaeome: Specific detection of Archaea in the gastrointestinal tract, lung, and nose and on skin. MBio 8, e00824–17 (2017).
pubmed: 29138298
pmcid: 5686531
doi: 10.1128/mBio.00824-17
St-Pierre, B. & Wright, A.-D. G. Diversity of gut methanogens in herbivorous animals. Animal 7, 49–56 (2013).
pubmed: 22717175
doi: 10.1017/S1751731112000912
Raymann, K., Moeller, A. H., Goodman, A. L. & Ochman, H. Unexplored archaeal diversity in the great ape gut microbiome. mSphere 2, e00026–17 (2017).
pubmed: 28251182
pmcid: 5322346
doi: 10.1128/mSphere.00026-17
Danielsson, R. et al. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol. 8, 1–15 (2017).
doi: 10.3389/fmicb.2017.00226
Borrel, G. et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 11, 2059–2074 (2017).
pubmed: 28585938
pmcid: 5563959
doi: 10.1038/ismej.2017.72
Brune, A. Methanogens in the Digestive Tract of Termites. In (Endo)symbiotic Methanogenic Archaea (ed. Hackstein, J. H. P.) 81–101 (2018). https://doi.org/10.1007/978-3-642-13615-3_6
Hackstein, J. H. & Stumm, C. K. Methane production in terrestrial arthropods. Proc. Natl. Acad. Sci. 91, 5441–5445 (1994).
pubmed: 8202505
pmcid: 44011
doi: 10.1073/pnas.91.12.5441
Poulsen, M. et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4, 1–9 (2013).
Samuel, B. S. et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl Acad. Sci. 104, 10643–10648 (2007).
pubmed: 17563350
pmcid: 1890564
doi: 10.1073/pnas.0704189104
Evans, P. N. et al. Community composition and density of Methanogens in the foregut of the Tammar Wallaby (Macropus eugenii). Appl. Environ. Microbiol. 75, 2598–2602 (2009).
pubmed: 19218421
pmcid: 2675200
doi: 10.1128/AEM.02436-08
Saengkerdsub, S. & Ricke, S. C. Ecology and characteristics of methanogenic archaea in animals and humans. Crit. Rev. Microbiol. 40, 97–116 (2014).
pubmed: 23425063
doi: 10.3109/1040841X.2013.763220
Glad, T. et al. Ecological characterisation of the colonic microbiota in arctic and sub-arctic seals. Microb. Ecol. 60, 320–330 (2010).
pubmed: 20523986
doi: 10.1007/s00248-010-9690-x
Hong, P. Y., Wheeler, E., Cann, I. K. O. & Mackie, R. I. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J. 5, 1461–1470 (2011).
pubmed: 21451584
pmcid: 3160690
doi: 10.1038/ismej.2011.33
Van Der Maarel, M. J. E. C., Artz, R. R. E., Haanstra, R. & Forney, L. J. Association of marine archaea with the digestive tracts of two marine fish species. Appl. Environ. Microbiol. 64, 2894–2898 (1998).
pubmed: 9687447
pmcid: 106789
doi: 10.1128/AEM.64.8.2894-2898.1998
Cruzen, P. J., Aselmann, I. & Seiler, W. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus B 38 B, 271–284 (1986).
doi: 10.1111/j.1600-0889.1986.tb00193.x
Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).
pubmed: 23985970
pmcid: 3814188
doi: 10.1093/gbe/evt128
Hoffmann, C. et al. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS One 8, e66019 (2013).
pubmed: 23799070
pmcid: 3684604
doi: 10.1371/journal.pone.0066019
Boer, C. G. et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat. Commun. 10, 4881 (2019).
pubmed: 31653850
pmcid: 6814863
doi: 10.1038/s41467-019-12873-4
Moeller, A. H. et al. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl Acad. Sci. 114, 13768–13773 (2017).
pubmed: 29229828
pmcid: 5748161
doi: 10.1073/pnas.1700122114
Yilmaz, P. et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).
doi: 10.1093/nar/gkt1209
Thomas, C. M., Taib, N., Gribaldo, S. & Borrel, G. Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host-adaptation in archaea and the evolution of methanogenesis. ISME Commun. 1, 47 (2021).
doi: 10.1038/s43705-021-00050-y
Brune, A. Methanogenesis in the digestive tracts of insects and other arthropods. In Biogenesis of Hydrocarbons, in: Handbook of Hydrocarbon and Lipid Microbiology 229–260 (Springer Cham, 2019).
Söllinger, A. et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92, fiv149 (2016).
pubmed: 26613748
doi: 10.1093/femsec/fiv149
Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).
pubmed: 26449758
pmcid: 4598811
doi: 10.1038/srep14567
Rieu-Lesme, F., Delbès, C. & Sollelis, L. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem. Curr. Microbiol. 51, 317–321 (2005).
pubmed: 16187155
doi: 10.1007/s00284-005-0036-8
Pester, M., Schleper, C. & Wagner, M. The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14, 300–306 (2011).
pubmed: 21546306
pmcid: 3126993
doi: 10.1016/j.mib.2011.04.007
Kerou, M. & Schleper, C. Nitrososphaera. Bergey’s Man. Syst. archaea Bact. 1–10 (2015).
Lehtovirta-Morley, L. E. et al. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol. Ecol. 92, fiw057 (2016).
Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).
pubmed: 21085198
doi: 10.1038/ismej.2010.171
Sprenger, W. W., Hackstein, J. H. P. & Keltjens, J. T. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol. Ecol. 60, 266–275 (2007).
pubmed: 17367516
doi: 10.1111/j.1574-6941.2007.00287.x
Sherrill-Mix, S. et al. Allometry and ecology of the bilaterian gut microbiome. MBio 9, e00319–18 (2018).
pubmed: 29588401
pmcid: 5874926
doi: 10.1128/mBio.00319-18
Tripathi, B. M. et al. Soil pH and biome are both key determinants of soil archaeal community structure. Soil Biol. Biochem. 88, 1–8 (2015).
doi: 10.1016/j.soilbio.2015.05.004
Sauder, L. A. et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 11, 1142–1157 (2017).
pubmed: 28195581
pmcid: 5398378
doi: 10.1038/ismej.2016.192
Jung, M. et al. A hydrophobic ammonia‐oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar‐contaminated sediment. Environ. Microbiol. Rep. 8, 983–992 (2016).
pubmed: 27700018
doi: 10.1111/1758-2229.12477
Hungate, R. E. The rumen and its microbes (Elsevier, 1966).
Wang, L. et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 57, 2096–2102 (2012).
pubmed: 22535281
doi: 10.1007/s10620-012-2167-7
Vester, B. M., Burke, S. L., Dikeman, C. L., Simmons, L. G. & Swanson, K. S. Nutrient digestibility and fecal characteristics are different among captive exotic felids fed a beef‐based raw diet. Zoo. Biol. Publ. Affil. Am. Zoo. Aquar. Assoc. 27, 126–136 (2008).
Loh, H. Q., Hervé, V. & Brune, A. Metabolic potential for reductive acetogenesis and a Novel Energy-Converting [NiFe] hydrogenase in bathyarchaeia from termite guts – A genome-centric analysis. Front. Microbiol. 11, 3644 (2021).
doi: 10.3389/fmicb.2020.635786
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690 (2017).
pubmed: 28985326
pmcid: 5978021
doi: 10.1093/icb/icx090
Ley, R. E. et al. Evolution of mammals and their gut microbes. Science. 320, 1647–1651 (2008).
pubmed: 18497261
pmcid: 2649005
doi: 10.1126/science.1155725
Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2017).
doi: 10.1111/mec.14473
Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).
pubmed: 29995839
doi: 10.1038/s41396-018-0175-0
Chibani, C. M. et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 7, 48–61 (2022).
pubmed: 34969981
doi: 10.1038/s41564-021-01020-9
Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17, 4954–4964 (2015).
pubmed: 26235304
doi: 10.1111/1462-2920.13006
Jensen, B. B. & Jørgensen, H. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl. Environ. Microbiol. 60, 1897–1904 (1994).
pubmed: 8031085
pmcid: 201578
doi: 10.1128/aem.60.6.1897-1904.1994
Shibata, M. & Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 81, 2–10 (2010).
pubmed: 20163666
doi: 10.1111/j.1740-0929.2009.00687.x
Alibardi, L. & Cossu, R. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag. 47, 69–77 (2016).
pubmed: 26254676
doi: 10.1016/j.wasman.2015.07.049
Chassard, C., Delmas, E., Robert, C. & Bernalier-Donadille, A. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol. Ecol. 74, 205–213 (2010).
pubmed: 20662929
doi: 10.1111/j.1574-6941.2010.00941.x
Kumpitsch, C. et al. Reduced B12 uptake and increased gastrointestinal formate are associated with archaeome-mediated breath methane emission in humans. Microbiome 9, 1–18 (2021).
doi: 10.1186/s40168-021-01130-w
Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
pubmed: 21508958
pmcid: 3728647
doi: 10.1038/nature09944
Williams, A. G., Withers, S. E. & Joblin, K. N. The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens. Curr. Microbiol. 29, 133–138 (1994).
doi: 10.1007/BF01570753
Ruaud, A. et al. Syntrophy via interspecies H2 transfer between christensenella and methanobrevibacter underlies their global cooccurrence in the human gut. MBio 11, e03235–19 (2020).
pubmed: 32019803
pmcid: 7002349
doi: 10.1128/mBio.03235-19
Feldewert, C., Lang, K. & Brune, A. The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol. Lett. 367, fnaa137 (2020).
pubmed: 32821944
pmcid: 7485788
doi: 10.1093/femsle/fnaa137
Schink, B. & Zeikus, J. G. Microbial methanol formation: A major end product of pectin metabolism. Curr. Microbiol. 4, 387–389 (1980).
doi: 10.1007/BF02605383
Dehority, B. A. Pectin-fermenting bacteria isolated from the bovine rumen. J. Bacteriol. 99, 189–196 (1969).
pubmed: 5802604
pmcid: 249986
doi: 10.1128/jb.99.1.189-196.1969
Kelly, W. J. et al. Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Anim. Microbiome 1, 1–13 (2019).
doi: 10.1186/s42523-019-0016-0
Lindinger, W., Taucher, J., Jordan, A., Hansel, A. & Vogel, W. Endogenous production of methanol after the consumption of fruit. Alcohol. Clin. Exp. Res. 21, 939–943 (1997).
pubmed: 9267548
doi: 10.1111/j.1530-0277.1997.tb03862.x
McKenney, E. A., O’Connell, T. M., Rodrigo, A. & Yoder, A. D. Feeding strategy shapes gut metagenomic enrichment and functional specialization in captive lemurs. Gut Microbes 9, 202–217 (2018).
pubmed: 29182421
pmcid: 6219591
doi: 10.1080/19490976.2017.1408762
Drochner, W., Kerler, A. & Zacharias, B. Pectin in pig nutrition, a comparative review. J. Anim. Physiol. Anim. Nutr. (Berl.). 88, 367–380 (2004).
doi: 10.1111/j.1439-0396.2004.00490.x
Facey, H. V., Northwood, K. S. & Wright, A. D. G. Molecular diversity of methanogens in fecal samples from captive sumatran orangutans (Pongo abelii). Am. J. Primatol. 74, 408–413 (2012).
pubmed: 22511523
doi: 10.1002/ajp.21992
Cornick, N. A., Jensen, N. S., Stahl, D. A., Hartman, P. A. & Allison, M. J. Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. Int. J. Syst. Evol. Microbiol. 44, 87–93 (1994).
Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 1–12 (2016).
doi: 10.1186/s12866-016-0708-5
Gaci, N., Borrel, G., Tottey, W., O’Toole, P. W. & Brugère, J. F. Archaea and the human gut: New beginning of an old story. World J. Gastroenterol. 20, 16062–16078 (2014).
pubmed: 25473158
pmcid: 4239492
doi: 10.3748/wjg.v20.i43.16062
Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).
pubmed: 26229982
pmcid: 4517851
doi: 10.1126/sciadv.1500183
Milliken, W., Albert, B. & Gomez, G. G. Yanomami: A forest people (Royal Botanic Gardens, Kew, 1999).
Fennema, D., Phillips, I. R. & Shephard, E. A. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos. 44, 1839–1850 (2016).
pubmed: 27190056
pmcid: 5074467
doi: 10.1124/dmd.116.070615
de la Cuesta-Zuluaga, J., Spector, T. D., Youngblut, N. D. & Ley, R. E. Genomic insights into adaptations of trimethylamine-utilizing methanogens to diverse habitats, including the human gut. Msystems 6, e00939-20 (2021).
De Zwart, F. J. et al. Glycine betaine and glycine betaine analogues in common foods. Food Chem. 83, 197–204 (2003).
doi: 10.1016/S0308-8146(03)00063-3
Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).
pubmed: 21475195
pmcid: 3086762
doi: 10.1038/nature09922
Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).
pubmed: 23563705
pmcid: 3650111
doi: 10.1038/nm.3145
Voragen, A. G. J., Coenen, G.-J., Verhoef, R. P. & Schols, H. A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 20, 263–275 (2009).
doi: 10.1007/s11224-009-9442-z
Cozannet, M. et al. New Insights into the Ecology and Physiology of Methanomassiliicoccales from Terrestrial and Aquatic Environments. Microorganisms 9, 30 (2021).
doi: 10.3390/microorganisms9010030
Chivers, D. J. & Hladik, C. M. Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J. Morphol. 166, 337–386 (1980).
pubmed: 7441763
doi: 10.1002/jmor.1051660306
Clauss, M. et al. Comparative methane production in mammalian herbivores. Animal 14, s113–s123 (2020).
pubmed: 32024568
doi: 10.1017/S1751731119003161
Triantafyllou, K., Chang, C. & Pimentel, M. Methanogens, methane and gastrointestinal motility. J. Neurogastroenterol. Motil. 20, 31 (2014).
pubmed: 24466443
doi: 10.5056/jnm.2014.20.1.31
Clauss, M. et al. The influence of natural diet composition, food intake level, and body size on ingesta passage in primates. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 150, 274–281 (2008).
doi: 10.1016/j.cbpa.2008.03.012
Karasov, W. H., Petrossian, E., Rosenberg, L. & Diamond, J. M. How do food passage rate and assimilation differ between herbivorous lizards and nonruminant mammals? J. Comp. Physiol. B 156, 599–609 (1986).
pubmed: 3734193
doi: 10.1007/BF00691047
Secor, S. M. & Diamond, J. Adaptive responses to feeding in Burmese pythons: Pay before pumping. J. Exp. Biol. 198, 1313–1325 (1995).
pubmed: 7782719
doi: 10.1242/jeb.198.6.1313
Costello, E. K., Gordon, J. I., Secor, S. M. & Knight, R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 4, 1375–1385 (2010).
pubmed: 20520652
doi: 10.1038/ismej.2010.71
Mackie, R. I. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol. 42, 319–326 (2002).
pubmed: 21708724
doi: 10.1093/icb/42.2.319
Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).
pubmed: 31132110
doi: 10.1093/femsle/fnz117
Youngblut, N. D. et al. Vertebrate host phylogeny influences gut archaeal diversity. Nat. Microbiol. 6, 1443–1454 (2021).
pubmed: 34702978
pmcid: 8556154
doi: 10.1038/s41564-021-00980-2
Nercessian, O., Fouquet, Y., Pierre, C., Prieur, D. & Jeanthon, C. Diversity of Bacteria and Archaea associated with a carbonate‐rich metalliferous sediment sample from the Rainbow vent field on the Mid‐Atlantic Ridge. Environ. Microbiol. 7, 698–714 (2005).
pubmed: 15819852
doi: 10.1111/j.1462-2920.2005.00744.x
Lane, D. J. 16S/23S rRNA sequencing. Nucleic acid Tech. Bact. Syst. 115–175 (1991).
DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. U.S.A. 89, 5685–5689 (1992).
pubmed: 1608980
pmcid: 49357
doi: 10.1073/pnas.89.12.5685
Skillman, L. C. et al. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10, 277–285 (2004).
pubmed: 16701528
doi: 10.1016/j.anaerobe.2004.05.003
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283
doi: 10.1093/nar/gks1219
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. Time tree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
pubmed: 28387841
doi: 10.1093/molbev/msx116
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
pubmed: 30016406
doi: 10.1093/bioinformatics/bty633
Cole, J. R. et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, 633–642 (2014).
doi: 10.1093/nar/gkt1244
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 1–22 (2016).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
pubmed: 25371430
doi: 10.1093/molbev/msu300
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, 256–259 (2019).
doi: 10.1093/nar/gkz239
Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25 (2015).
doi: 10.1371/journal.pcbi.1004226
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, 1002687 (2012).
doi: 10.1371/journal.pcbi.1002687
Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).
pubmed: 30833729
pmcid: 6453112
doi: 10.1038/s41564-019-0363-3
Dick, J. M. CHNOSZ: Thermodynamic calculations and diagrams for geochemistry. Front. Earth Sci. 7, 180 (2019).
doi: 10.3389/feart.2019.00180
Wilman, H. et al. EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178. Ecology 95, 2027 (2014).
doi: 10.1890/13-1917.1
Beasley, D. E., Koltz, A. M., Lambert, J. E., Fierer, N. & Dunn, R. R. The evolution of stomach acidity and its relevance to the human microbiome. PLoS One 10, e0134116 (2015).
pubmed: 26222383
pmcid: 4519257
doi: 10.1371/journal.pone.0134116
Langer, P. Comparative anatomy of the gastrointestinal tract in Eutheria I: Taxonomy, Biogeography and Food: Afrotheria, Xenarthra and Euarchontoglires (Walter de Gruyter GmbH & Co KG, 2017).
Abraham, A. J. et al. Improved estimation of gut passage time considerably affects trait‐based dispersal models. Funct. Ecol. 1–10 https://doi.org/10.1111/1365-2435.13726 (2020).
Steuer, P. et al. Is there an influence of body mass on digesta mean retention time in herbivores? A comparative study on ungulates. Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 160, 355–364 (2011).
pubmed: 21777685
doi: 10.1016/j.cbpa.2011.07.005
Lin, M. F., Chang, C., Yang, C. W. & Dierenfeld, E. S. Aspects of digestive anatomy, feed intake and digestion in the Chinese pangolin (Manis pentadactyla) at Taipei zoo. Zoo. Biol. 34, 262–270 (2015).
pubmed: 25914383
doi: 10.1002/zoo.21212
Zhuang, G. et al. Biogeochemistry, microbial activity, and diversity in surface and subsurface deep‐sea sediments of South China Sea. Limnol. Oceanogr. 64, 2252–2270 (2019).
doi: 10.1002/lno.11182
Czerkawski, J. W. & Breckenridge, G. Determination of concentration of hydrogen and some other gases dissolved in biological fluids. Lab. Pract. 20, 403–413 (1971).
pubmed: 5104124
Lloyd, D., Hillman, N., Yarlett, N. & Williams, A. G. Hydrogen production by rumen holotrich protozoa: Effects of oxygen and implications for metabolic control by in situ conditions. J. Protozool. 36, 205–213 (1989).
pubmed: 2657036
doi: 10.1111/j.1550-7408.1989.tb01075.x
Ametaj, B. N. et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 6, 583–594 (2010).
doi: 10.1007/s11306-010-0227-6
Morgavi, D. P., Martin, C., Jouany, J. P. & Ranilla, M. J. Rumen protozoa and methanogenesis: Not a simple cause-effect relationship. Br. J. Nutr. 107, 388–397 (2012).
pubmed: 21762544
doi: 10.1017/S0007114511002935
Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).
doi: 10.1038/s41928-017-0004-x
Steggerda, F. R. Gastrointestinal gas following food consumption. Ann. N.Y. Acad. Sci. 150, 57–66 (1968).
pubmed: 4230541
doi: 10.1111/j.1749-6632.1968.tb19031.x
Zhuang, G.-C. et al. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim. Cosmochim. Acta. 187, 1–20 (2016).
doi: 10.1016/j.gca.2016.05.005
Xu, L. et al. Methyl‐compounds driven benthic carbon cycling in the sulfate‐reducing sediments of South China Sea. Environ. Microbiol. 23, 641–651 (2021).
pubmed: 32506654
doi: 10.1111/1462-2920.15110
Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L. & Welch, D. M. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8, 1–9 (2007).
doi: 10.1186/gb-2007-8-7-r143