Nickel-catalysed asymmetric hydrogenation of oximes.
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
06
03
2021
accepted:
11
05
2022
pubmed:
14
6
2022
medline:
11
8
2022
entrez:
13
6
2022
Statut:
ppublish
Résumé
Chiral hydroxylamines are vital substances in bioscience and versatile subunits in the preparation of a variety of functional molecules. However, asymmetric and non-asymmetric synthetic approaches to these compounds are far from satisfactory. Although atom-economic metal-catalysed asymmetric hydrogenations have been studied for over 50 years, the asymmetric hydrogenation of oximes to the corresponding chiral hydroxylamines remains challenging because of the labile N-O bond and inert C=N bond. Here we report an environmentally friendly, earth-abundant, transition-metal nickel-catalysed asymmetric hydrogenation of oximes, affording the corresponding chiral hydroxylamines with up to 99% yield, 99% e.e. and with a substrate/catalyst ratio of 1,000. Computational results indicate that the weak interactions between the catalyst and substrate play crucial roles not only in the transition states, but also during the approach of the substrate to the catalyst, by selectively reducing the reaction barriers and thus improving the reaction efficiency and securing the generation of chirality.
Identifiants
pubmed: 35697929
doi: 10.1038/s41557-022-00971-8
pii: 10.1038/s41557-022-00971-8
doi:
Substances chimiques
Oximes
0
Nickel
7OV03QG267
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
920-927Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Rappoport, Z. & Lebman, J. F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids (Wiley-VCH, 2008).
Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).
pubmed: 22193101
doi: 10.1038/nature10702
Tan, K. L. Temporary intramolecularity. Nat. Chem. 4, 253–254 (2012).
pubmed: 22437708
doi: 10.1038/nchem.1308
Paudyal, M. P. et al. Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).
pubmed: 27609890
pmcid: 5040325
doi: 10.1126/science.aaf8713
Tang, W. & Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 103, 3029–3069 (2003).
pubmed: 12914491
doi: 10.1021/cr020049i
Johnson, N. B., Lennon, I. C., Moran, P. H. & Ramsden, J. A. Industrial-scale synthesis and applications of asymmetric hydrogenation catalysts. Acc. Chem. Res. 40, 1291–1299 (2007).
pubmed: 17803270
doi: 10.1021/ar700114k
Xie, J.-H., Zhu, S.-F. & Zhou, Q.-L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem. Rev. 111, 1713–1760 (2011).
pubmed: 21166392
doi: 10.1021/cr100218m
Chen, Q.-A., Ye, Z.-S., Duan, Y. & Zhou, Y.-G. Homogeneous palladium-catalyzed asymmetric hydrogenation. Chem. Soc. Rev. 42, 497–511 (2013).
pubmed: 23138972
doi: 10.1039/C2CS35333D
Zhang, Z., Butt, N. A. & Zhang, W. Asymmetric hydrogenation of nonaromatic cyclic substrates. Chem. Rev. 116, 14769–14827 (2016).
pubmed: 27960269
doi: 10.1021/acs.chemrev.6b00564
Seo, C. S. G. & Morris, R. H. Catalytic homogeneous asymmetric hydrogenation: successes and opportunities. Organometallics 38, 47–65 (2019).
doi: 10.1021/acs.organomet.8b00774
Maj, A. M., Suisse, I. & Agbossou-Niedercorn, F. Asymmetric hydrogenation of 2,3-dihydro-1H-inden-1-one oxime and derivatives. Tetrahedron Asymmetry 27, 268–273 (2016).
doi: 10.1016/j.tetasy.2016.02.005
Huang, K., Li, S., Chang, M. & Zhang, X. Rhodium-catalyzed enantioselective hydrogenation of oxime acetates. Org. Lett. 15, 484–487 (2013).
pubmed: 23339282
doi: 10.1021/ol303282u
Krasik, P. & Alper, H. The ruthenium catalyzed asymmetric hydrogenation of oximes using binap as the chiral ligand. Tetrahedron Asymmetry 3, 1283–1288 (1992).
doi: 10.1016/S0957-4166(00)82086-8
Xie, Y., Mi, A., Jiang, Y. & Liu, H. Enantioselective hydrogenation of ketone oxime catalyzed by Ir-DPAMPP complex. Synth. Commun. 31, 2767–2771 (2001).
doi: 10.1081/SCC-100105323
Knowles, W. S. & Sabacky, M. J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun. 1968, 1445–1446 (1968).
Knowles, W. S. Asymmetric hydrogenations (Nobel Lecture). Angew. Chem. Int. Ed. 41, 1998–2007 (2002).
doi: 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8
Noyori, R. Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew. Chem. Int. Ed. 41, 2008–2022 (2002).
doi: 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4
Bolotin, D. S., Bokach, N. A., Demakova, M. Y. & Kukushkin, V. Y. Metal-involving synthesis and reactions of oximes. Chem. Rev. 117, 13039–13122 (2017).
pubmed: 28991449
doi: 10.1021/acs.chemrev.7b00264
Chu, Y., Shan, Z., Liu, D. & Sun, N. Asymmetric reduction of oxime ethers promoted by chiral spiroborate esters with an O
pubmed: 16674084
doi: 10.1021/jo060123n
Huang, X. et al. Asymmetric synthesis of primary amines via the spiroborate-catalyzed borane reduction of oxime ethers. Org. Lett. 9, 1793–1795 (2007).
pubmed: 17397177
pmcid: 2571073
doi: 10.1021/ol0704791
Huang, K. et al. Highly enantioselective borane reduction of heteroaryl and heterocyclic ketoxime ethers catalyzed by novel spiroborate ester derived from diphenylvalinol: application to the synthesis of nicotine analogues. J. Org. Chem. 73, 4017–4026 (2008).
pubmed: 18447392
pmcid: 2701197
doi: 10.1021/jo800204n
Huang, K., Ortiz-Marciales, M., Stepanenko, V., Jesús, M. D. & Correa, W. A practical and efficient route for the highly enantioselective synthesis of mexiletine analogues and novel β-thiophenoxy and pyridyl ethers. J. Org. Chem. 73, 6928–6931 (2008).
pubmed: 18690744
pmcid: 2668572
doi: 10.1021/jo801181d
Mohr, J. & Oestreich, M. B(C
doi: 10.1002/anie.201407324
Mas-Roselló, J., Smejkal, T. & Cramer, N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines. Science 368, 1098–1102 (2020).
pubmed: 32499437
doi: 10.1126/science.abb2559
Guin, D. & Gruebele, M. Weak chemical interactions that drive protein evolution: crowding, sticking and quinary structure in folding and function. Chem. Rev. 119, 10691–10717 (2019).
pubmed: 31356058
doi: 10.1021/acs.chemrev.8b00753
Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).
pubmed: 11976460
doi: 10.1126/science.1068696
Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).
doi: 10.1002/anie.201503476
Thomas, A. A. et al. Mechanistically guided design of ligands that significantly improve the efficiency of CuH-catalyzed hydroamination reactions. J. Am. Chem. Soc. 140, 13976–13984 (2018).
pubmed: 30244567
pmcid: 6469493
doi: 10.1021/jacs.8b09565
Ge, L. et al. Iron-catalysed asymmetric carboazidation of styrenes. Nat. Catal. 4, 28–35 (2021).
doi: 10.1038/s41929-020-00551-4
Liu, C. et al. Manganese-catalyzed asymmetric hydrogenation of quinolines enabled by π-π interaction. Angew. Chem. Int. Ed. 60, 5108–5113 (2021).
doi: 10.1002/anie.202013540
Chen, J. et al. Pd(OAc)
pubmed: 30479338
pmcid: 6258694
doi: 10.1038/s41467-018-07462-w
Zhang, J. et al. Chemo- and enantioselective hydrogenation of ɑ-formyl enamides: an efficient access to chiral ɑ-amido aldehydes. Angew. Chem. Int. Ed. 58, 11505–11512 (2019).
doi: 10.1002/anie.201905263
Chen, J. & Gridnev, I. D. Size is important: artificial catalyst mimics behavior of natural enzymes. iScience 23, 100960 (2020).
pubmed: 32193144
pmcid: 7076558
doi: 10.1016/j.isci.2020.100960
Li, B., Chen, J., Zhang, Z., Gridnev, I. D. & Zhang, W. Nickel-catalyzed asymmetric hydrogenation of N-sulfonyl imines. Angew. Chem. Int. Ed. 58, 7329–7334 (2019).
doi: 10.1002/anie.201902576
Hu, Y. et al. Nickel-catalyzed asymmetric hydrogenation of 2-amidoacrylates. Angew. Chem. Int. Ed. 59, 5371–5375 (2020).
doi: 10.1002/anie.201916534
Liu, D. et al. Ni-catalyzed asymmetric hydrogenation of N-aryl imino esters for the efficient synthesis of chiral α-aryl glycines. Nat. Commun. 11, 5935 (2020).
pubmed: 33230219
pmcid: 7683563
doi: 10.1038/s41467-020-19807-5
Hu, Y. et al. Cobalt‐catalyzed asymmetric hydrogenation of C=N bond enabled by assisted coordination and non‐bonding interaction. Angew. Chem. Int. Ed. 58, 15767–15771 (2019).
doi: 10.1002/anie.201909928
Zhang, J. et al. Asymmetric hydrogenation of γ-branched allylamines for the efficient synthesis of γ-chirogenic amines. Nat. Sci. 1, e10021 (2021).
Li, Y.-Y., Yu, S.-L., Shen, W.-Y. & Gao, J.-X. Iron‑, cobalt- and nickel-catalyzed asymmetric transfer hydrogenation and asymmetric hydrogenation of ketones. Acc. Chem. Res. 48, 2587–2598 (2015).
pubmed: 26301426
doi: 10.1021/acs.accounts.5b00043
Zhang, Z., Butt, N. A., Zhou, M., Liu, D. & Zhang, W. Asymmetric transfer and pressure hydrogenation with earth‐abundant transition metal catalysts. Chin. J. Chem. 36, 443–454 (2018).
doi: 10.1002/cjoc.201800053
Alig, L., Fritz, M. & Schneider, S. First-row transition metal (de)hydrogenation catalysis based on functional pincer ligands. Chem. Rev. 119, 2681–2751 (2019).
pubmed: 30596420
doi: 10.1021/acs.chemrev.8b00555
Liu, Y., Dong, X.-Q. & Zhang, X. Recent advances of nickel-catalyzed homogeneous asymmetric hydrogenation. Chin. J. Org. Chem. 40, 1096–1104 (2020).
doi: 10.6023/cjoc201912025
Agbossou-Niedercorn, F. & Michon, C. Bifunctional homogeneous catalysts based on first row transition metals in asymmetric hydrogenation. Coordin. Chem. Rev. 425, 213523 (2020).
doi: 10.1016/j.ccr.2020.213523
Friedfeld, M. R. et al. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076–1080 (2013).
pubmed: 24288328
doi: 10.1126/science.1243550
Zuo, W., Lough, A. J., Li, Y. F. & Morris, R. H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342, 1080–1083 (2013).
pubmed: 24288329
doi: 10.1126/science.1244466
Friedfeld, M. R., Zhong, H., Ruck, R. T., Shevlin, M. & Chirik, P. J. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science 360, 888–893 (2018).
pubmed: 29798879
doi: 10.1126/science.aar6117