Exploration on the Cr(VI) resistance mechanism of a novel thermophilic Cr(VI)-reducing bacteria Anoxybacillus flavithermus ABF1 isolated from Tengchong geothermal region, China.


Journal

Environmental microbiology reports
ISSN: 1758-2229
Titre abrégé: Environ Microbiol Rep
Pays: United States
ID NLM: 101499207

Informations de publication

Date de publication:
10 2022
Historique:
received: 24 03 2022
accepted: 02 04 2022
pubmed: 16 6 2022
medline: 23 9 2022
entrez: 15 6 2022
Statut: ppublish

Résumé

Hexavalent chromium resistance and reduction mechanisms of microorganism provide a critical guidance for Cr(VI) bioremediation. However, related researches are limited in mesophiles and deficient for thermophiles. In this work, a novel alkaline Cr(VI)-reducing thermophile Anoxybacillus flavithermus ABF1 was isolated from geothermal region. The mechanisms of Cr(VI) resistance and reduction were investigated. The results demonstrated that A. flavithermus ABF1 could survive in a wide temperature range from 50°C to 70°C and in pH range of 7.0-9.0. Strain ABF1 showed excellent growth activity and Cr(VI) removal performance when initial Cr(VI) concentration was lower than 200 mg L

Identifiants

pubmed: 35701897
doi: 10.1111/1758-2229.13070
doi:

Substances chimiques

Amlodipine Besylate, Olmesartan Medoxomil Drug Combination 0
Metals, Heavy 0
Chromium 0R0008Q3JB
chromium hexavalent ion 18540-29-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

795-803

Informations de copyright

© 2022 Society for Applied Microbiology and John Wiley & Sons Ltd.

Références

Bai, Y.N., Lu, Y.Z., Shen, N., Lau, T.C., and Zeng, R.J. (2018) Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. J Hazard Mater 344: 585-592.
Belchik, S.M., Kennedy, D.W., Dohnalkova, A.C., Wang, Y.M., Sevinc, P.C., Wu, H., et al. (2011) Extracellular reduction of hexavalent chromium by cytochromes Mtrc and Omca of Shewanella oneidensis MR-1. Appl Environ Microb 77: 4035-4041.
Bhowmick, D.C., Bal, B., Chatterjee, N.S., Ghosh, A.N., and Pal, S. (2009) A low-GC Gram-positive Thermoanaerobacter-like bacterium isolated from an Indian hot spring contains Cr(VI) reduction activity both in the membrane and cytoplasm. J Appl Microbiol 106: 2006-2016.
Brown, S.D., Thompson, M.R., VerBerkmoes, N.C., Chourey, K., Shah, M., Zhou, J.Z., et al. (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5: 1054-1071.
Castro, C., Urbieta, M.S., Cazon, J.P., and Donati, E.R. (2019) Metal biorecovery and bioremediation: whether or not thermophilic are better than mesophilic microorganisms. Bioresour Technol 279: 317-326.
Cattant, F., Crusset, D., and Féron, D. (2008). Corrosion issues in nuclear industry today. Materials Today 11: 32-37.
Cheung, K.H., and Gu, J.D. (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59: 8-15.
d'Abzac, P., Bordas, F., Joussein, E., van Hullebusch, E.D., Lens, P.N.L., and Guibaud, G. (2013) Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environ Sci Pollut R 20: 4509-4519.
Das, S., Mishra, J., Das, S.K., Pandey, S., Rao, D.S., Chakraborty, A., et al. (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96: 112-211.
Dhal, B., Thatoi, H., Das, N., and Pandey, B.D. (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85: 1471-1479.
Elangovan, R., Philip, L., and Chandraraj, K. (2010) Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol 160: 81-97.
Gonzalez, P.S., Ambrosio, L.F., Paisio, C.E., Talano, M.A., Medina, M.I., and Agostini, E. (2014) Chromium (VI) remediation by a native strain: effect of environmental conditions and removal mechanisms involved. Environ Sci Pollut R 21: 13551-13559.
Han, H., Ling, Z., Zhou, T., Xu, R., He, Y., Liu, P., and Li, X. (2017) Copper (II) binding of NAD(P)H- flavin oxidoreductase (NfoR) enhances its Cr (VI)-reducing ability. Sci Rep 7: 15481.
Hu, L., Liu, B., Li, S.Z., Zhong, H., and He, Z.G. (2021) Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Chemosphere 269: 128741.
Hu, P., Brodie, E.L., Suzuki, Y., McAdams, H.H., and Andersen, G.L. (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187: 8437-8449.
Hu, Y.T., Chen, N., Liu, T., Feng, C.P., Ma, L.L., Chen, S., and Li, M. (2020) The mechanism of nitrate-Cr(VI) reduction mediated by microbial under different initial pHs. J Hazard Mater 393: 122434.
Javanbakht, V., Alavi, S.A., and Zilouei, H. (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69: 1775-1787.
Jiang, B., Gong, Y.F., Gao, J.N., Sun, T., Liu, Y.J., Oturan, N., and Oturan, M.A. (2019) The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives. J Hazard Mater 365: 205-226.
Joutey, N.T., Sayel, H., Bahafid, W., and El Ghachtouli, N. (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233: 45-69.
Kang, C., Pingxiao, W., Li, L., Langfeng, Y., Ruan, B., Gong, B., and Zhu, N. (2017) Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis. Environ Sci Pollut Res 24: 5949-5963.
Karthik, C., Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., and Arulselvi, P.I. (2017). Biosorption and biotransformation of Cr(VI) by novel Cellulosimicrobium funkei strain AR6. Journal of the Taiwan Institute of Chemical Engineers 70: 282-290.
Karthik, C., Barathi, S., Pugazhendhi, A., Ramkumar, V.S., Thi, N.B.D., and Arulselvi, P.I. (2017a) Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333: 42-53.
Kim, M., Oh, H.S., Park, S.C., and Chun, J. (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346-351.
Kwak, Y.H., Lee, D.S., and Kim, H.B. (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microb 69: 4390-4395.
Li, B., Pan, D.M., Zheng, J.S., Cheng, Y.J., Ma, X.Y., Huang, F., and Lin, Z. (2008) Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24: 9630-9635.
Li, M.K., He, Z.G., Hu, Y.T., Hu, L., and Zhong, H. (2019) Both cell envelope and cytoplasm were the locations for chromium(VI) reduction by Bacillus sp. M6. Bioresour Technol 273: 130-135.
Liu, G., Zhou, J., Wang, J., Zhou, M., Hong, L., and Jin, R. (2009) Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Bioresour Technol 100: 2791-2795.
Ma, Y., Zhong, H., and He, Z.G. (2019). Cr(VI) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(VI)-reducing thermophile isolated from Tengchong geothermal region, China. Chemical Engineering Journal, 371: 524-534.
Ma, Z., Zhu, W., Long, H., Chai, L., and Wang, Q. (2007). Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochemistry, 42: 1028-1032.
Mansilla, M.C., and de Mendoza, D. (2000) The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146: 815-821.
Mary Mangaiyarkarasi, M.S., Vincent, S., Janarthanan, S., Subba Rao, T., and Tata, B.V.R. (2011) Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18: 157-167.
Mohapatra, R.K., Parhi, P.K., Thatoi, H., and Panda, C.R. (2017) Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India. Chem Ecol 33: 114-130.
Mugerfeld, I., Law, B.A., Wickham, G.S., and Thompson, D.K. (2009) A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress. Appl Microbiol Biotechnol 82: 1131-1141.
Opperman, D.J., and van Heerden, E. (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103: 1907-1913.
Opperman, D.J., and van Heerden, E. (2008) A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiol Lett 280: 210-218.
Pattanapipitpaisal, P., and Reakyai, T. (2013) Cr (VI) reduction by cell-free extract of thermophilic Bacillus fusiformis NTR 9. Songklanakarin J Sci Technol 35: 407-414.
Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785-786.
Poljsak, B., Pocsi, I., Raspor, P., and Pesti, M. (2010) Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol 50: 21-36.
Pradhan, D., Sukla, L.B., Mishra, B.B., and Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production 209: 617-629.
Pradhan, D., Sukla, L.B., Sawyer, M., and Rahman, P.K.S.M. (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55: 1-20.
Prasad, S., Yadav, K.K., Kumar, S., Gupta, N., Cabral-Pinto, M.M.S., Rezania, S., et al. (2021) Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage 285: 112174.
Qi, W.B., Reiter, R.J., Tan, D.X., Garcia, J.J., Manchester, L.C., Karbownik, M., and Calvo, J.R. (2000) Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E. Environ Health Perspect 108: 399-402.
Ramirez-Diaz, M.I., Diaz-Perez, C., Vargas, E., Riveros-Rosas, H., Campos-Garcia, J., and Cervantes, C. (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 321-332.
Rath, B.P., Das, S., Mohapatra, P.K.D., and Thatoi, H. (2014) Optimization of extracellular chromate reductase production by bacillus amyloliquefaciens (CSB 9) isolated from chromite mine environment. Biocatal Agric Biotechnol 3: 35-41.
Sadettin, S., and Dönmez, G. (2007). Simultaneous bioaccumulation of reactive dye and chromium(VI) by using thermophil Phormidium sp.. Enzyme and Microbial Technology, 41: 175-180.
Sandana Mala, J.G., Sujatha, D., and Rose, C. (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170: 235-241.
Sarkar, A., Sar, P., and Islam, E. (2016) Hexavalent chromium reduction by microbacterium oleivorans A1: a possible mechanism of chromate -detoxification and -bioremediation. Recent Pat Biotechnol 9: 116-129.
Sibi, G. (2016). Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy & Environment 1: 172-177.
Singh, R., Dong, H.L., Liu, D., Zhao, L.D., Marts, A.R., Farquhar, E., et al. (2015) Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta 148: 442-456.
Slobodkina, G.B., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I. (2007) Reduction of chromate, selenite, tellurite, and iron(III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1. Microbiology 76: 530-534.
Thatoi, H., Das, S., Mishra, J., Rath, B.P., and Das, N. (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146: 383-399.
Valenzuela-García, L.I., Zapata, B.L., Ramírez-Ramírez, N., Huchin-Mian, J.P., Robleto, E.A., Ayala-García, V.M., and Pedraza-Reyes, M. (2020) Novel biochemical properties and physiological role of the flavin mononucleotide oxidoreductase YhdA from Bacillus subtilis. Appl Environ Microbiol 86: E01688-E01620.
Wang, Y., Sevinc, P.C., Belchik, S.M., Fredrickson, J., Shi, L., and Lu, H.P. (2013) Single-cell imaging and spectroscopic analyses of Cr(VI) reduction on the surface of bacterial cells. Langmuir 29: 950-956.
Wang, Y.Y., Chai, L.Y., Liao, Q., Tang, C.J., Liao, Y.P., Peng, B., and Yang, Z.H. (2016) Structural and genetic diversity of hexavalent chromium-resistant bacteria in contaminated soil. Geomicrobiol J 33: 222-229.
Yao, Y., Hu, L., Li, S., Zeng, Q., Zhong, H., and He, Z. (2020) Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Ecotoxicol Environ Saf 201: 110850.
Zeng, Q., Hu, Y., Yang, Y., Hu, L., Zhong, H., and He, Z. (2019) Cell envelop is the key site for Cr(VI) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(VI) reducing bacterium. J Hazard Mater 368: 149-155.
Zhang, K.D., and Li, F.L. (2011) Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl Microbiol Biot 90: 1163-1169.

Auteurs

Wenjing Yang (W)

School of Minerals Processing and Bioengineering, Central South University, Changsha, China.

Wanqi Hong (W)

School of Minerals Processing and Bioengineering, Central South University, Changsha, China.

Yongji Huang (Y)

School of Minerals Processing and Bioengineering, Central South University, Changsha, China.

Shuzhen Li (S)

School of Minerals Processing and Bioengineering, Central South University, Changsha, China.

Mengke Li (M)

School of Minerals Processing and Bioengineering, Central South University, Changsha, China.

Hui Zhong (H)

School of Life Sciences, Central South University, Changsha, China.

Zhiguo He (Z)

School of Minerals Processing and Bioengineering, Central South University, Changsha, China.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH