Exploration on the Cr(VI) resistance mechanism of a novel thermophilic Cr(VI)-reducing bacteria Anoxybacillus flavithermus ABF1 isolated from Tengchong geothermal region, China.
Anoxybacillus flavithermus
Cr(VI) reduction
Cr(VI) resistance
Thermophile
azoR
cysP
Journal
Environmental microbiology reports
ISSN: 1758-2229
Titre abrégé: Environ Microbiol Rep
Pays: United States
ID NLM: 101499207
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
24
03
2022
accepted:
02
04
2022
pubmed:
16
6
2022
medline:
23
9
2022
entrez:
15
6
2022
Statut:
ppublish
Résumé
Hexavalent chromium resistance and reduction mechanisms of microorganism provide a critical guidance for Cr(VI) bioremediation. However, related researches are limited in mesophiles and deficient for thermophiles. In this work, a novel alkaline Cr(VI)-reducing thermophile Anoxybacillus flavithermus ABF1 was isolated from geothermal region. The mechanisms of Cr(VI) resistance and reduction were investigated. The results demonstrated that A. flavithermus ABF1 could survive in a wide temperature range from 50°C to 70°C and in pH range of 7.0-9.0. Strain ABF1 showed excellent growth activity and Cr(VI) removal performance when initial Cr(VI) concentration was lower than 200 mg L
Identifiants
pubmed: 35701897
doi: 10.1111/1758-2229.13070
doi:
Substances chimiques
Amlodipine Besylate, Olmesartan Medoxomil Drug Combination
0
Metals, Heavy
0
Chromium
0R0008Q3JB
chromium hexavalent ion
18540-29-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
795-803Informations de copyright
© 2022 Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Bai, Y.N., Lu, Y.Z., Shen, N., Lau, T.C., and Zeng, R.J. (2018) Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. J Hazard Mater 344: 585-592.
Belchik, S.M., Kennedy, D.W., Dohnalkova, A.C., Wang, Y.M., Sevinc, P.C., Wu, H., et al. (2011) Extracellular reduction of hexavalent chromium by cytochromes Mtrc and Omca of Shewanella oneidensis MR-1. Appl Environ Microb 77: 4035-4041.
Bhowmick, D.C., Bal, B., Chatterjee, N.S., Ghosh, A.N., and Pal, S. (2009) A low-GC Gram-positive Thermoanaerobacter-like bacterium isolated from an Indian hot spring contains Cr(VI) reduction activity both in the membrane and cytoplasm. J Appl Microbiol 106: 2006-2016.
Brown, S.D., Thompson, M.R., VerBerkmoes, N.C., Chourey, K., Shah, M., Zhou, J.Z., et al. (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5: 1054-1071.
Castro, C., Urbieta, M.S., Cazon, J.P., and Donati, E.R. (2019) Metal biorecovery and bioremediation: whether or not thermophilic are better than mesophilic microorganisms. Bioresour Technol 279: 317-326.
Cattant, F., Crusset, D., and Féron, D. (2008). Corrosion issues in nuclear industry today. Materials Today 11: 32-37.
Cheung, K.H., and Gu, J.D. (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59: 8-15.
d'Abzac, P., Bordas, F., Joussein, E., van Hullebusch, E.D., Lens, P.N.L., and Guibaud, G. (2013) Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environ Sci Pollut R 20: 4509-4519.
Das, S., Mishra, J., Das, S.K., Pandey, S., Rao, D.S., Chakraborty, A., et al. (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96: 112-211.
Dhal, B., Thatoi, H., Das, N., and Pandey, B.D. (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85: 1471-1479.
Elangovan, R., Philip, L., and Chandraraj, K. (2010) Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol 160: 81-97.
Gonzalez, P.S., Ambrosio, L.F., Paisio, C.E., Talano, M.A., Medina, M.I., and Agostini, E. (2014) Chromium (VI) remediation by a native strain: effect of environmental conditions and removal mechanisms involved. Environ Sci Pollut R 21: 13551-13559.
Han, H., Ling, Z., Zhou, T., Xu, R., He, Y., Liu, P., and Li, X. (2017) Copper (II) binding of NAD(P)H- flavin oxidoreductase (NfoR) enhances its Cr (VI)-reducing ability. Sci Rep 7: 15481.
Hu, L., Liu, B., Li, S.Z., Zhong, H., and He, Z.G. (2021) Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Chemosphere 269: 128741.
Hu, P., Brodie, E.L., Suzuki, Y., McAdams, H.H., and Andersen, G.L. (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187: 8437-8449.
Hu, Y.T., Chen, N., Liu, T., Feng, C.P., Ma, L.L., Chen, S., and Li, M. (2020) The mechanism of nitrate-Cr(VI) reduction mediated by microbial under different initial pHs. J Hazard Mater 393: 122434.
Javanbakht, V., Alavi, S.A., and Zilouei, H. (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69: 1775-1787.
Jiang, B., Gong, Y.F., Gao, J.N., Sun, T., Liu, Y.J., Oturan, N., and Oturan, M.A. (2019) The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives. J Hazard Mater 365: 205-226.
Joutey, N.T., Sayel, H., Bahafid, W., and El Ghachtouli, N. (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233: 45-69.
Kang, C., Pingxiao, W., Li, L., Langfeng, Y., Ruan, B., Gong, B., and Zhu, N. (2017) Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis. Environ Sci Pollut Res 24: 5949-5963.
Karthik, C., Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., and Arulselvi, P.I. (2017). Biosorption and biotransformation of Cr(VI) by novel Cellulosimicrobium funkei strain AR6. Journal of the Taiwan Institute of Chemical Engineers 70: 282-290.
Karthik, C., Barathi, S., Pugazhendhi, A., Ramkumar, V.S., Thi, N.B.D., and Arulselvi, P.I. (2017a) Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333: 42-53.
Kim, M., Oh, H.S., Park, S.C., and Chun, J. (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346-351.
Kwak, Y.H., Lee, D.S., and Kim, H.B. (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microb 69: 4390-4395.
Li, B., Pan, D.M., Zheng, J.S., Cheng, Y.J., Ma, X.Y., Huang, F., and Lin, Z. (2008) Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24: 9630-9635.
Li, M.K., He, Z.G., Hu, Y.T., Hu, L., and Zhong, H. (2019) Both cell envelope and cytoplasm were the locations for chromium(VI) reduction by Bacillus sp. M6. Bioresour Technol 273: 130-135.
Liu, G., Zhou, J., Wang, J., Zhou, M., Hong, L., and Jin, R. (2009) Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Bioresour Technol 100: 2791-2795.
Ma, Y., Zhong, H., and He, Z.G. (2019). Cr(VI) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(VI)-reducing thermophile isolated from Tengchong geothermal region, China. Chemical Engineering Journal, 371: 524-534.
Ma, Z., Zhu, W., Long, H., Chai, L., and Wang, Q. (2007). Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochemistry, 42: 1028-1032.
Mansilla, M.C., and de Mendoza, D. (2000) The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146: 815-821.
Mary Mangaiyarkarasi, M.S., Vincent, S., Janarthanan, S., Subba Rao, T., and Tata, B.V.R. (2011) Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18: 157-167.
Mohapatra, R.K., Parhi, P.K., Thatoi, H., and Panda, C.R. (2017) Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India. Chem Ecol 33: 114-130.
Mugerfeld, I., Law, B.A., Wickham, G.S., and Thompson, D.K. (2009) A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress. Appl Microbiol Biotechnol 82: 1131-1141.
Opperman, D.J., and van Heerden, E. (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103: 1907-1913.
Opperman, D.J., and van Heerden, E. (2008) A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiol Lett 280: 210-218.
Pattanapipitpaisal, P., and Reakyai, T. (2013) Cr (VI) reduction by cell-free extract of thermophilic Bacillus fusiformis NTR 9. Songklanakarin J Sci Technol 35: 407-414.
Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785-786.
Poljsak, B., Pocsi, I., Raspor, P., and Pesti, M. (2010) Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol 50: 21-36.
Pradhan, D., Sukla, L.B., Mishra, B.B., and Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production 209: 617-629.
Pradhan, D., Sukla, L.B., Sawyer, M., and Rahman, P.K.S.M. (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55: 1-20.
Prasad, S., Yadav, K.K., Kumar, S., Gupta, N., Cabral-Pinto, M.M.S., Rezania, S., et al. (2021) Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage 285: 112174.
Qi, W.B., Reiter, R.J., Tan, D.X., Garcia, J.J., Manchester, L.C., Karbownik, M., and Calvo, J.R. (2000) Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E. Environ Health Perspect 108: 399-402.
Ramirez-Diaz, M.I., Diaz-Perez, C., Vargas, E., Riveros-Rosas, H., Campos-Garcia, J., and Cervantes, C. (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 321-332.
Rath, B.P., Das, S., Mohapatra, P.K.D., and Thatoi, H. (2014) Optimization of extracellular chromate reductase production by bacillus amyloliquefaciens (CSB 9) isolated from chromite mine environment. Biocatal Agric Biotechnol 3: 35-41.
Sadettin, S., and Dönmez, G. (2007). Simultaneous bioaccumulation of reactive dye and chromium(VI) by using thermophil Phormidium sp.. Enzyme and Microbial Technology, 41: 175-180.
Sandana Mala, J.G., Sujatha, D., and Rose, C. (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170: 235-241.
Sarkar, A., Sar, P., and Islam, E. (2016) Hexavalent chromium reduction by microbacterium oleivorans A1: a possible mechanism of chromate -detoxification and -bioremediation. Recent Pat Biotechnol 9: 116-129.
Sibi, G. (2016). Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy & Environment 1: 172-177.
Singh, R., Dong, H.L., Liu, D., Zhao, L.D., Marts, A.R., Farquhar, E., et al. (2015) Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta 148: 442-456.
Slobodkina, G.B., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I. (2007) Reduction of chromate, selenite, tellurite, and iron(III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1. Microbiology 76: 530-534.
Thatoi, H., Das, S., Mishra, J., Rath, B.P., and Das, N. (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146: 383-399.
Valenzuela-García, L.I., Zapata, B.L., Ramírez-Ramírez, N., Huchin-Mian, J.P., Robleto, E.A., Ayala-García, V.M., and Pedraza-Reyes, M. (2020) Novel biochemical properties and physiological role of the flavin mononucleotide oxidoreductase YhdA from Bacillus subtilis. Appl Environ Microbiol 86: E01688-E01620.
Wang, Y., Sevinc, P.C., Belchik, S.M., Fredrickson, J., Shi, L., and Lu, H.P. (2013) Single-cell imaging and spectroscopic analyses of Cr(VI) reduction on the surface of bacterial cells. Langmuir 29: 950-956.
Wang, Y.Y., Chai, L.Y., Liao, Q., Tang, C.J., Liao, Y.P., Peng, B., and Yang, Z.H. (2016) Structural and genetic diversity of hexavalent chromium-resistant bacteria in contaminated soil. Geomicrobiol J 33: 222-229.
Yao, Y., Hu, L., Li, S., Zeng, Q., Zhong, H., and He, Z. (2020) Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Ecotoxicol Environ Saf 201: 110850.
Zeng, Q., Hu, Y., Yang, Y., Hu, L., Zhong, H., and He, Z. (2019) Cell envelop is the key site for Cr(VI) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(VI) reducing bacterium. J Hazard Mater 368: 149-155.
Zhang, K.D., and Li, F.L. (2011) Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl Microbiol Biot 90: 1163-1169.