Catalytic Activation of Imines by Chalcogen Bond Donors in a Povarov [4+2] Cycloaddition Reaction.

Lewis acids chalcogen bonding cycloaddition non-covalent interactions organocatalysis

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
22 Aug 2022
Historique:
received: 12 04 2022
pubmed: 16 6 2022
medline: 25 8 2022
entrez: 15 6 2022
Statut: ppublish

Résumé

Recently, chalcogen bonding has been investigated in more detail in organocatalysis and the scope of activated functionalities continues to increase. Herein, the activation of imines in a Povarov [4+2] cycloaddition reaction with bidentate cationic chalcogen bond donors is presented. Tellurium-based Lewis acids show superior properties compared to selenium-based catalysts and inactive sulfur-based analogues. The catalytic activity of the chalcogen bonding donors increases with weaker binding anions. Triflate, however, is not suitable due to its participation in the catalytic pathway. A solvent screening revealed a more efficient activation in less polar solvents and a pronounced effect of solvent (and catalyst) on endo : exo diastereomeric ratio. Finally, new chiral chalcogen bonding catalysts were applied but provided only racemic mixtures of the product.

Identifiants

pubmed: 35704037
doi: 10.1002/chem.202200917
pmc: PMC9545453
doi:

Substances chimiques

Imines 0
Solvents 0
Selenium H6241UJ22B
Tellurium NQA0O090ZJ

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200917

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : HU1782/5-1
Organisme : Deutsche Forschungsgemeinschaft
ID : EXC 2033 - 390677874
Organisme : European Regional Development Fund
Organisme : Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

Informations de copyright

© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.

Références

J Am Chem Soc. 2017 Mar 1;139(8):3122-3133
pubmed: 28140582
J Org Chem. 2022 Feb 4;87(3):1661-1668
pubmed: 34181414
Angew Chem Int Ed Engl. 2006 Feb 27;45(10):1520-43
pubmed: 16491487
Angew Chem Int Ed Engl. 2017 Sep 18;56(39):12009-12012
pubmed: 28605080
J Am Chem Soc. 2019 Jun 12;141(23):9175-9179
pubmed: 31124673
Chemistry. 2017 Dec 1;23(67):16972-16975
pubmed: 29057533
J Mol Model. 2007 Oct;13(10):1033-8
pubmed: 17647029
Chemistry. 2022 Aug 22;28(47):e202200917
pubmed: 35704037
J Mol Model. 2009 Jun;15(6):723-9
pubmed: 19082643
Acc Chem Res. 2019 May 21;52(5):1313-1324
pubmed: 31082186
Inorg Chem. 2007 Mar 19;46(6):2249-60
pubmed: 17311376
J Am Chem Soc. 2015 Apr 1;137(12):4126-33
pubmed: 25781631
J Am Chem Soc. 2014 Feb 12;136(6):2351-62
pubmed: 24432873
J Am Chem Soc. 2019 Jan 16;141(2):810-814
pubmed: 30618243
J Am Chem Soc. 2021 Jun 16;143(23):8625-8630
pubmed: 34085823
Chemistry. 2020 Mar 23;26(17):3843-3861
pubmed: 31943430
J Am Chem Soc. 2016 Jul 27;138(29):9093-6
pubmed: 27433964
Chemistry. 2002 Mar 1;8(5):1118-24
pubmed: 11891899
Adv Mater. 2016 May;28(19):3615-45
pubmed: 27028553
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
Chem Commun (Camb). 2016 Aug 2;52(64):9881-4
pubmed: 27376877
Angew Chem Int Ed Engl. 2014 Nov 3;53(45):12172-6
pubmed: 25223593
Angew Chem Int Ed Engl. 2019 Feb 11;58(7):1880-1891
pubmed: 30225899
Chemistry. 2012 Aug 6;18(32):9955-64
pubmed: 22782805
Org Lett. 2002 Feb 7;4(3):339-42
pubmed: 11820874
Chemistry. 2020 Jan 27;26(6):1258-1262
pubmed: 31729084
Org Biomol Chem. 2003 Aug 7;1(15):2788-94
pubmed: 12948206
Chem Sci. 2017 Dec 1;8(12):8164-8169
pubmed: 29568463
Angew Chem Int Ed Engl. 2017 Jan 16;56(3):812-815
pubmed: 27981727
Angew Chem Int Ed Engl. 2020 Dec 7;59(50):22306-22310
pubmed: 32969111
J Mol Model. 2007 Feb;13(2):291-6
pubmed: 16927107
Chem Commun (Camb). 2012 Sep 25;48(74):9299-301
pubmed: 22875079
J Chem Phys. 2010 Oct 7;133(13):134105
pubmed: 20942521
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305
pubmed: 16240044
Org Lett. 2020 Aug 21;22(16):6647-6652
pubmed: 32806211
Science. 2010 Feb 19;327(5968):986-90
pubmed: 20167783
Chemistry. 2016 Oct 4;22(41):14434-50
pubmed: 27465662
Chem Rev. 2007 Dec;107(12):5713-43
pubmed: 18072808
J Org Chem. 2004 Apr 30;69(9):2945-52
pubmed: 15104430
Angew Chem Int Ed Engl. 2018 Dec 21;57(52):17079-17083
pubmed: 30411434
J Am Chem Soc. 2002 Sep 11;124(36):10638-9
pubmed: 12207502
Nat Commun. 2016 Apr 19;7:11299
pubmed: 27090355
Angew Chem Int Ed Engl. 2016 Dec 23;55(52):16084-16087
pubmed: 27885777
J Am Chem Soc. 2006 Mar 1;128(8):2666-74
pubmed: 16492053
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9395-9400
pubmed: 33528075
Chem Sci. 2018 Dec 13;10(2):348-353
pubmed: 30746083
Dalton Trans. 2017 Aug 8;46(31):10121-10138
pubmed: 28686248
Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19281-19286
pubmed: 34166563
Chemistry. 2003 Jun 16;9(12):2676-83
pubmed: 12772282
J Am Chem Soc. 2020 Feb 12;142(6):3117-3124
pubmed: 31961148
Angew Chem Int Ed Engl. 2019 Nov 18;58(47):16923-16927
pubmed: 31535789

Auteurs

Tim Steinke (T)

Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.

Patrick Wonner (P)

Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.

Richard M Gauld (RM)

Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.

Sascha Heinrich (S)

Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.

Stefan M Huber (SM)

Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.

Articles similaires

Comparative assessment of physics-based in silico methods to calculate relative solubilities.

Adiran Garaizar Suarez, Andreas H Göller, Michael E Beck et al.
1.00
Solvents Solubility Quantum Theory Molecular Dynamics Simulation Thermodynamics
Xanthones Garcinia mangostana Plant Extracts Solvents Chemical Precipitation
Humans Selenium Male Female Hypertension
Animals Aquaculture Fish Diseases Trematode Infections Zoonoses

Classifications MeSH